

AUGUST 5-6, 2020 BRIEFINGS

Policy Implications of Faulty Risk Models and How to Fix Them

Wade Baker, PhD | Virginia Tech & Cyentia Institute

David Severski | Cyentia Institute

4439999768

BHUSA @BLACKHATEVENTS

Introduction

At Cyentia, we help the vendor community find a share the insights hidden in their data.

We're no stranger to incident data and models

- Verizon DBIR The trail blazer of data-driven incident analysis
- Information Risk Insights Study (IRIS) 20/20 A ten year review of cyber loss data events and the implications on cost modelling
- Ripples Across the Risk Surface- Study of multi-party security incidents and the propagation of downstream losses
- IRIS Extreme Coming Soon! A deep dive into the heavy tail of incident losses

Examples of Faulty Risk Models

THE DENVER POST

BUSINESS > TECHNOLOGY

60% of small companies that suffer a cyber attack are out of business within six months.

"The 2011 statistic that '60 percent of businesses close within 6 months of a cyberattack' is not from NCSA and its original source cannot be confirmed."

https://www.bankinfosecurity.com/blogs/60-hacked-small-businesses-fail-how-reliable-that-stat-p-2464

- Reality -

Figure 16: Distribution of breach losses by firm size (in revenue) with estimates for typical and extreme events

A \$100B enterprise should expect a cost that's 0.000003% of annual revenues for a typical breach. A mom and pop shop, on the other hand, will likely lose 1/4 of their earnings.

https://www.cyentia.com/iris/

- Reality -

A single cost-per-record metric simply doesn't work and shouldn't be used. It underestimates the cost of smaller events and (vastly) overestimates large events.

https://www.cyentia.com/iris/

First Party Losses

Cy<mark>entia</mark>

Information Risk Insights Study

A Clearer Vision for Assessing the Risk of Cyber Incidents

Objective: Provide data-driven models for better estimating the loss side of the risk equation.

Data Source: Advisen's feed of over 100,000 publicly discoverable breach events.

Study sample: Ten year history (2010-2019) with over 56K events with breach data.

The Flaw of Averages

More Data is Essential for Good Results

For Loss, Size Matters

				Typical		Extreme			
More than \$100B		• * 8 88	N. 8.18 1.1	\$292,000		••••• \$26M		• • •	
\$10B to \$100B	• 8 (• • •	~\$.< <u>\$.</u> \$.23	\$502,000	7.637.64 E	.x. • * \$\$\$;	\$78M	8- 5 - 4	
\$1B to \$10B	• •	• •		\$504,000		\$4	2M•	•	
\$100M to \$1B	•	84.5	\$	80,000	\$. : <u>\$</u> . >	\$9M 8	•		
\$10M to \$100M	• •	60 Y	• • • • • • • •	214,000	\$	• \$7M • 🐭	•		
\$1M to \$10M	• •	•	\$13	2,000		\$5M •			
\$100k to \$1M 🕨	•	5 1° 2 - 1	\$62,000	外部建造	э з \$ЗМ	• • •			
Less than \$100k	٠	• ••	\$24,000	\$109K	•				
	\$100	\$1K	\$10K	\$100K	\$1M	\$10M \$.	100M	\$1B	
		Loss							

.

Resuscitating Replacing CPR

Looking at Policy Through the IRIS

• SMB impacts

- Small firms have rare, but disproportionate losses
- Losses are not evenly distributed
 - Most of the time, losses are not material
 - The heavy tail of losses is rare, but real
- Regulatory impacts
 - Disclosure laws
- Cyber insurance
 - Catastrophe modelling rises in importance

3rd Party Risk

Ripples Across the Risk Surface

Objective: Understand the frequency and impact of multi-party cybersecurity incidents, most common due to vendor security compromise

Data Source: Advisen's cyber loss database containing 92,000 cyber events collected from publicly verifiable sources

Study sample: Multi-party incidents (aka "ripple events")

- 813 unique ripple events identified in dataset.
- 5,437 organizations impacted by 813 ripple events.
- Range of 3 to 131 firms impacted in each ripple event

Losses Are Not Limited To Primary Victim

FIGURE 1: RIPPLE EFFECTS PROPAGATING ACROSS INDUSTRIES FROM THE AMCA BREACH

FIGURE 3: NUMBER OF ACTUAL MULTI-PARTY INCIDENTS (ORANGE) WITH FORECASTS ACCOUNTING FOR RECORDING DELAYS (GRAY)

FIGURE 4: NUMBER OF CENTRAL VS. DOWNSTREAM ORGANIZATIONS AFFECTED IN MULTI-PARTY INCIDENTS

FIGURE 9: RATIO OF CENTRAL VS. DOWNSTREAM RIPPLE EVENTS BY SUBSECTOR

Cy cyentia Downstream Victims Disproportionately SMBs

FIGURE 10: NUMBER OF CENTRAL VS. DOWNSTREAM RIPPLE EVENTS BY ORGANIZATION SIZE (EMPLOYEE COUNT)

FIGURE 12: DISTRIBUTION OF TOTAL LOSSES FOR SINGLE-PARTY INCIDENTS VS. MULTI-PARTY INCIDENTS

FIGURE 13: DISTRIBUTION OF TOTAL LOSSES FOR SINGLE-PARTY INCIDENTS VS. DOWNSTREAM LOSSES IN MULTI-PARTY INCIDENTS

Cy cyentia Implications of Poor 3rd Party Risk Models

- 3rd party risk "policy" mainly protects sourcing firms FROM suppliers
 - We've shown multi-party incidents disproportionately impact downstream, especially smaller, suppliers.
 - Is there a more equitable and effective approach to managing risk for the entire supply chain?
- Research suggests a type of "Bullwhip Effect" for 3rd party risk
 - Info sharing mitigates bullwhip effect in supply chain risk management.
 - Can more aggressive info/intel sharing help reduce 3rd party cyber risk?
- Recognition of data breaches as a form of negative externality has driven development of consumer data privacy policy and regulation
 - Negative externalities not only impact consumers but also downstream firms
 - How would this look/work applied to multi-party incidents?

Conclusions

The Failure of Policy

The burden of regulation affects smaller firms more than larger firms

- Larger firms seem to be successful in containing costs of breaches
- Smaller firms disproportionately affected

Disclosure laws

• Punitive environment for disclosing breaches

Policy and contractual remedies for breaches

• Nature of remedies are based on bad models

...and How to Fix It

Specialization of security concerns

- Don't roll your own crypto, or make your own POS system
- Firms will respond to regulatory regimes

We need better risk models to inform policy

1. Collect better data

- a. Disclosure laws based on learning rather than shaming
- b. Fund and consolidate public sources of security data

2. Build better models

- a. Our field is beset with overly simplistic and unvalidated models in which we place far too much trust
- b. Many (like a flat cost per record for breaches) don't even pass cursory analysis, yet become tenets of our knowledge base

3. Conduct better research

- a. Reading industry reports often gives a sense that authors are more interested in promoting than learning
- b. Consume research with more skepticism
- c. Create research with more curiosity
- d. "Reward" organizations that produce solid research

Thank you!