
Hunting Invisible Salamanders:
Cryptographic (in)Security with Attacker-Controlled Keys

Paul Grubbs
Cornell Tech, New York University, University of Michigan

1

About Me

Now: PhD student in
Computer Science at
Cornell’s NYC campus

This fall: starting
postdoc at NYU

Next fall: starting
as junior professor
at Michigan EECS

2

This Talk

This is a talk about cryptography.
Some of the slides involve math.

This symbol: if you don’t understand
all the details, don’t worry about it!

Intended audience: those who design, implement, and use cryptography.
Others will find talk interesting and enjoyable but may lack some context.

3

Cat Picture

4

Authenticated Encryption

Core of protocols
like TLS, IPSec, SSH

Encrypt message with using
authenticated encryption (AE)

(Galois/Counter Mode, Chacha20/Poly1305)

Agree on random key

If key is random + hidden:
AE hides cat pictures,
prevents modifications

???

5

New Settings, New Needs

Attacker chooses key(s)

Attacker Message

Encrypt message with using
authenticated encryption (AE)

(Galois/Counter Mode, Chacha20/Poly1305)

Increasingly important setting for AE:
• Password-Based Encryption/PAKE
• E2EE Group Messaging
• Abuse Reporting in Encrypted Messaging

Key isn’t random + hidden!
What security do we need?

What security do we expect?

6

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Overview

Based on these research papers:
Message Franking via Committing Authenticated Encryption

G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment

Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks

Len, G., Ristenpart. In submission.

Attacks resulting from non-committing AE:
- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

6

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

7

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Overview

Based on these research papers:
Message Franking via Committing Authenticated Encryption

G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment

Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks

Len, G., Ristenpart. In submission.

Attacks resulting from non-committing AE:
- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

7

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

8

Attacker-Controlled Keys

Attacker Message

Message and encryption key
both chosen by adversary

Cat Picture

is hidden, has
lots of randomness

Try to learn message or
change decryption output

9

Example: Password-based AE
Guess

password1

Can’t decrypt!
123
456

…

password1

Guess

If attacker doesn’t
know decryption key,

can learn using (online)
brute-force attack

Brute-force feasible if key is not very random
(e.g. password/PIN) or if side channel leaks key bits

They’re
using

password1!

Decryption succeeded!

10

Example: Reporting Plaintexts
Fraudulent Records

AE.Decrypt(,)Fraudulent Records

Attacker chooses encryption
and decryption key: tries to

lie about ciphertext contents

Decrypt outputs something
other than fraudulent records

Can’t let the
auditor see
records…

Auditor

Useful to imagine AE as a lockbox

???Intuition holds for hidden random key:
• Can’t see inside (confidentiality)
• Can’t change contents (integrity)

11

Committing Security for AE

No matter the key, only one thing
can come out when it’s unlocked

Useful to imagine AE as a lockbox

Intuition holds for hidden random key:
• Can’t see inside (confidentiality)
• Can’t change contents (integrity)

12

Committing Security for AE

Without this, AE lockboxes
could unlock many ways…

Committing security binds attacker
to a single AE decryption, prevents
invisible salamanders in ciphertexts

13

Reporting Salamanders

AE.Decrypt(,)

If AE is committing, attacker
can’t lie about plaintext by

choosing different key

Decrypt fails - can’t
report salamanders

Auditor

Committing AE

Committing AE

14

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Overview

Based on these research papers:
Message Franking via Committing Authenticated Encryption

G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment

Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks

Len, G., Ristenpart. In submission.

Attacks resulting from non-committing AE:
- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

14

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

Derive Pad

IV

Derive Pad’ ⨁

15

Invisible Salamanders for CTR Mode

=

Plaintext

Pad

Ciphertext

=

⨁

Pad’

Plaintext’

16

Galois/Counter Mode (GCM)
GCM is a fast, modern AE.

NIST/IEEE/ISO standard

Uses AES-CTR + message authentication
code (MAC) to prevent tampering AES-CTR

Tag

Message

MessageIV

Decryption recomputes, checks tag,
fails if tags do not match

AES-CTR

Salamander

To get invisible salamanders for GCM,
need to find with same MAC

output for and
MessageIV

Tag

Input

Input

Output

MAC

MAC

17

Colliding GCM’s MAC

IV

MAC is polynomial evaluation + XOR.
Fast but not collision-resistant (cf. SHA-256)

Tag

MAC(,):
C1 = Blocks()
H = AES(, 0)
Pad = AES(,)

= C1*H2 + len*H + Pad

IV

Tag

IV

1.

2.

3.

1. Split ciphertext into blocks (coefficients)
2. Compute hash point (H) and pad (Pad)
3. Evaluate polynomial at H, then XOR Pad

(‘len’ is encoded ciphertext length)

18

Colliding GCM’s MAC
Tag is a “simple” algebraic function of ciphertext:

solve one equation to collide for two keys

1. Choose any
2. For key , derive H1, Pad1
3. For key , derive H2, Pad2
4. Set tag equations equal, solve for C1:

5. Let be C1 , recompute
6. Output

IV

C1*H1
2 + len*H1 + Pad1

= C1*H2
2 + len*H2 + Pad2

TagMessageIV

Message Tag

C1*(H1
2 + H2

2) = len*(H1 + H2) + Pad1 + Pad2

C1 = [len*(H1 + H2) + Pad1 + Pad2]*(H1
2 + H2

2)-1

2x = 6

x = 3

IV

Tag

MAC(,):
C1 = Blocks()
H = AES(, 0)
Pad = AES(,)

= C1*H2 + len*H + Pad

IV

Tag

IV

One equation,
one unknown!

Not true for collision-resistant
hashes like SHA-256

19

From Two Keys to Many

𝐻!"#! ⋯ 𝐻!$
⋮ ⋱ ⋮

𝐻%"#! ⋯ 𝐻%$

𝑇𝑎𝑔 + 𝑃𝑎𝑑! + 𝑙𝑒𝑛𝑠 ∗ 𝐻!
⋮

𝑇𝑎𝑔 + 𝑃𝑎𝑑" + 𝑙𝑒𝑛𝑠 ∗ 𝐻"

𝐶!
⋮
𝐶"

=

IV

Tag

MAC(,):
C1 , …, Cm = Blocks()
H = AES(, 0)
Pad = AES(,)

= ∑𝒊 C𝒊∗Hm+2−𝒊 + len*H + Pad

IV

Tag

IV

C1*(H1
2 + H2

2) = len*(H1 + H2) + Pad1 + Pad2

C1 = [len*(H1 + H2) + Pad1 + Pad2]*(H1
2 + H2

2)-1

C1*H1
2 + len*H1 + Pad1 = C1*H2

2 + len*H2 + Pad2

Linear Algebra

One equation
per key

As many variables as ciphertext blocks:
can solve when m ≥ k in O(k2) time

Polynomial MACs are very common:
Poly1305 (libsodium, NaCL), GCM-SIV, etc.

Colliding GCM’s MAC on two keys is pretty easy.
Can even collide many (>>2) keys: use interpolation

</math>

𝐻!"#! ⋯ 𝐻!$
⋮ ⋱ ⋮

𝐻%"#! ⋯ 𝐻%$

𝑇𝑎𝑔 + 𝑃𝑎𝑑! + 𝑙𝑒𝑛𝑠 ∗ 𝐻!
⋮

𝑇𝑎𝑔 + 𝑃𝑎𝑑" + 𝑙𝑒𝑛𝑠 ∗ 𝐻"

𝐶!
⋮
𝐶"

=

IV

Tag

MAC(,):
C1 , …, Cm = Blocks()
H = AES(, 0)
Pad = AES(,)

= ∑𝒊 C𝒊∗Hm+2−𝒊 + len*H + Pad

IV

Tag

IV

C1*(H1
2 + H2

2) = len*(H1 + H2) + Pad1 + Pad2

C1 = [len*(H1 + H2) + Pad1 + Pad2]*(H1
2 + H2

2)-1

C1*H1
2 + len*H1 + Pad1 = C1*H2

2 + len*H2 + Pad2

Linear Algebra

One equation
per key

As many variables as ciphertext blocks:
can solve when m ≥ k in O(k2) time

Polynomial MACs are very common:
Poly1305 (libsodium, NaCL), GCM-SIV, etc.

20

Colliding GCM’s MAC on two keys is pretty easy.
Can even collide many (>>2) keys: use interpolation

1. Widely-used AE schemes are not committing
(though they are fine for use in TLS/IPSec/SSH!)

2. Crafting invisible salamanders for them is easy
3. One ciphertext can have 100,000s+ invisible salamanders

(E.g., my colleague generated one with 131,072 correct decryptions)

21

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Overview

Based on these research papers:
Message Franking via Committing Authenticated Encryption

G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment

Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks

Len, G., Ristenpart. In submission.

Attacks resulting from non-committing AE:
- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

21

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

22

Multi-Receiver Encryption
In group messaging applications, senders
must encrypt and send messages to group

Keys shared pairwise; only one ciphertext

23

Multi-Receiver Encryption

Cat Picture Cat Picture

Cat Picture

In group messaging applications, senders
must encrypt and send messages to group

Used by Whatsapp, Keybase, others

Keys shared pairwise; only one ciphertext

24

Multi-Receiver Encryption

Used by Whatsapp, Keybase, others

Message

Message

Message

If encryption is not committing:
send different keys, ciphertext
with invisible salamander

In group messaging applications, senders
must encrypt and send messages to group

Keys shared pairwise; only one ciphertext

Different receivers see
different messages!

Theoretical attack. Unclear if
these are vulnerable (homework!)

They said !%$#!

!%$#!!%$#!
!%$#!

Abuse Reporting for Encrypted Messaging

[Facebook 2016]:
Reporting via ad-hoc proof
of contents: message franking

Service can’t tell if “!%$#!” was sent.
Need secure reporting of message content

25

Attack: use of non-committing
encryption means any sender could

have sent unreportable content

Facebook’s Message Franking Protocol

!%$#!!%$#!

1. 2. 3.
!%$#!

Message franking:
1. GCM Encrypt w/sender-chosen per-message key
2. Facebook stores, forwards ciphertexts
3. Report all recent keys, FB

decrypts unique ciphertexts

26

Evading Message Franking

!%$#! !%$#!

!%$#! !%$#!
!%$#!

3. receiver
sees both

Message franking:
1. Encrypt w/sender-chosen per-message key
2. Facebook stores, forwards ciphertexts
3. Report all recent keys, FB

decrypts unique ciphertexts

4. Only the innocuous
image appears in
report to Facebook!

27

2. Send
twice with /

1. Craft GCM ciphertext :
• Decrypts under to innocuous image
• Decrypts under to abusive image

!%$#!

!%$#!

Proof of concept: ciphertext which decrypts to
valid JPEG under and valid BMP under

ff d8

42 4d

ff fe

L0 , L1 00 00

CL0,CL1 Junk

BMP data

JPEG data

Junk

ff d9

C0 , C1 , C2 , C3 C4 , C5 BMP ctxt Padding JPEG ctxt

Decrypt
with K1

Decrypt
with K2

1 2 3
1. Image headers
2. BMP length and

comment header
3. Comment length

(JPEG)

(BMP)

Crafting the Ciphertext

Abusive JPEG receiver sees,
but not in abuse report

Innocuous BMP
in abuse report

29

Partitioning Oracles

Guess

password1

Can’t decrypt!
123
456

…

password1

Guess

Decryption succeeded!

Use of non-committing AE with passwords
can lead to partitioning oracles: speedup
for online brute-force key recovery for AE

30

Partitioning Oracles

password1
123
456

password1

Found partitioning oracle attacks on:
• Shadowsocks UDP proxying
• Incorrect OPAQUE prototypes
Latent vulnerabilities elsewhere

Decryption succeeded!

Guess

Check two guesses with one ciphertext

Worst-case exponential reduction in guesses!
E.g., one million passwords = only 20 guesses

Use of non-committing AE with passwords
can lead to partitioning oracles: speedup
for online brute-force key recovery for AE

31

Preventing Invisible Salamanders

Committing AE schemes do exist!
E.g., CTR-then-HMAC (done correctly)

Not standardized, nor widely available in libraries
(also can be less efficient than non-committing AE)

Needed only if attacker-controlled
keys are part of threat model

32

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Conclusion

Attacks resulting from non-committing AE:
- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

Based on these research papers:
Message Franking via Committing Authenticated Encryption

G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment

Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks

Len, G., Ristenpart. In submission.
32

Thanks for
listening! Any

questions?

Special thanks to all my coauthors,
and Hugo Krawczyk, Katriel Cohn-
Gordon, and BlackHat organizers

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

33

