

AUGUST 5-6, 2020 Briefings

CloudLeak: DNN Model Extractions from Commercial MLaaS Platforms

Yier Jin, Honggang Yu, and Tsung-Yi Ho University of Florida, National Tsing Hua University yier.jin@ece.ufl.edu

#BHUSA @BLACKHATEVENTS

Who We Are

Yier Jin, PhD

@jinyier

Associate Professor and Endowed IoT Term Professor The Warren B. Nelms Institute for the Connected World Department of Electrical and Computer Engineering University of Florida

Research Interests:

- Hardware and Circuit Security
- Internet of Things (IoT) and Cyber-Physical System (CPS) Design
- Functional programming and trusted IP cores
- Autonomous system security and resilience
- Trusted and resilient high-performance computing

Who We Are

國立情華大學

Tsung-Yi Ho, PhD @TsungYiHol

Professor

Department of Computer Science National Tsing Hua University

Program Director AI Innovation Program Ministry of Science and Technology, Taiwan

Research Interests:

- Hardware and Circuit Security
- Trustworthy AI
- Design Automation for Emerging Technologies

Who We Are

Honggang Yu @yuhonggang

Visiting PhD. student The Warren B. Nelms Institute for the Connected World Department of Electrical and Computer Engineering University of Florida

Research Interests:

- Intersection of security, privacy, and machine learning
- Embedded systems security
- Internet of Things (IoT) security
- Machine learning and deep learning with applications in VLSI computer aided design (CAD)

Outline

Background and Motivation

- Al Interface API in Cloud
- Existing Attacks and Defenses

Adversarial Examples based Model Stealing

- Adversarial Examples
- Adversarial Active Learning
- FeatureFool
- MLaaS Model Stealing Attacks

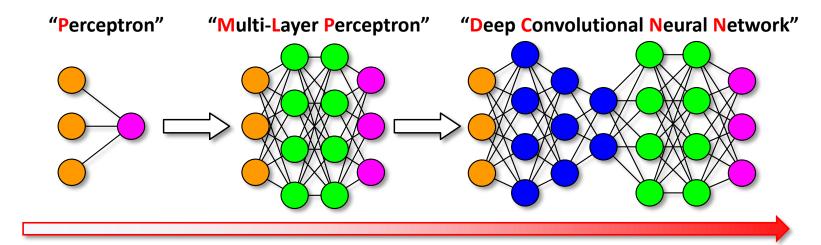
Case Study

Commercial APIs hosted by Microsoft, Face++, IBM, Google and Clarifai

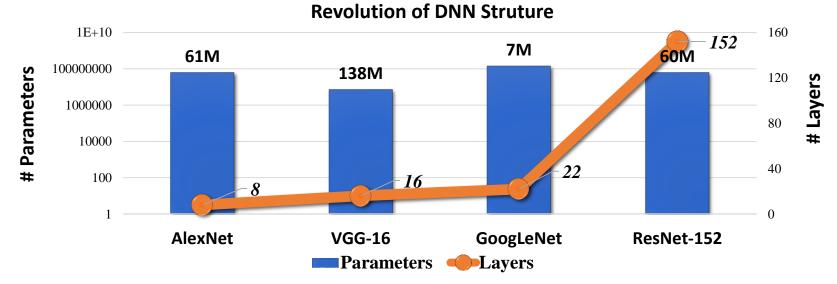
Defenses

Conclusions

Success of DNN



DNN based systems are widely used in various applications:



Commercialized DNN

Machine Learning as a Service (MLaaS)

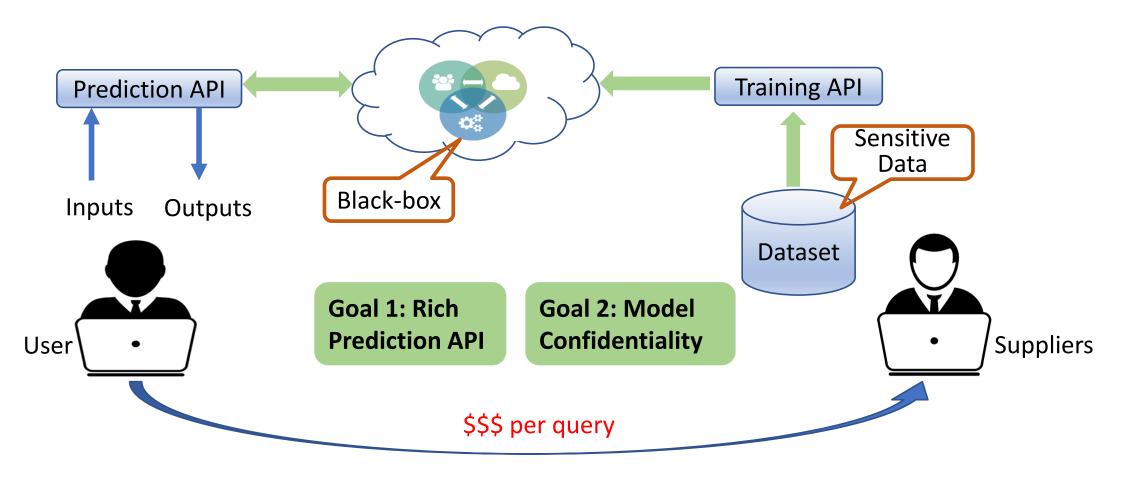
Google Cloud Platform, IBM Watson Visual Recognition, and Microsoft Azure

Intelligent Computing System (ICS)

TensorFlow Lite, Pixel Visual Core (in Pixel 2), and Nvidia Jetson TX

IBM **Watson** Visual Recognition

Machine Learning as a Service



Overview of MLaaS Working Flow

Machine Learning as a Service

Google Cloud Platform

Services	Products and Solutions	Customization Function		Black-box	Model Types	Monetize	Confidence Scores
Microsoft	Custom Vision	٧	Traffic Recognition	V	NN	V	V
Microsoft	Custom Vision	٧	Flower Recognition	V	NN	V	V
Face++	Emotion Recognition API	×	Face Emotion Verification	V	NN	V	V
IBM	Watson Visual Recognition	V	Face Recognition	V	NN	V	V
Google	AutoML Vision	٧	Flower Recognition	V	NN	V	٧
Clarifai	Not Safe for Work (NSFW)	×	Offensive Content Moderation	V	NN	V	٧

Model Stealing Attacks

Various model stealing attacks have been developed

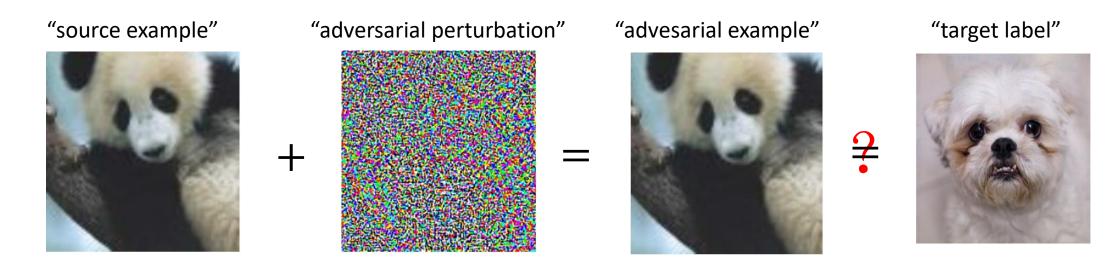
None of them can achieve a good tradeoffs among query counts, accuracy, cost, etc.

Proposed Attacks	Parameter Size	Queries	Accuracy	Black-box?	Stealing Cost
F. Tramer (USENIX'16)	~ 45k	~ 102k	High	V	Low
Juuti (EuroS&P'19)	~ 10M	~ 111k	High	V	-
Correia-Silva (IJCNN'18)	~ 200M	~ 66k	High	V	High
Papernot (AsiaCCS'17)	~ 100M	~ 7k	Low	V	-

Adversarial Example based Model Stealing

Adversarial Examples in DNN

Adversarial examples are model inputs generated by an adversary to fool deep learning models.



Goodfellow et al, 2014

Adversarial Examples

Non-Feature-based

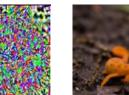
Projected Gradient Descent (PGD) attack

C&W Attack

Feature-based

- Feature adversary attack
- FeatureFool

Perturbation

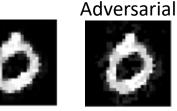


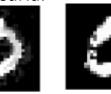
Guide

Sabour et al, 2016

Adversarial

Source



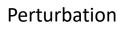


Source

-

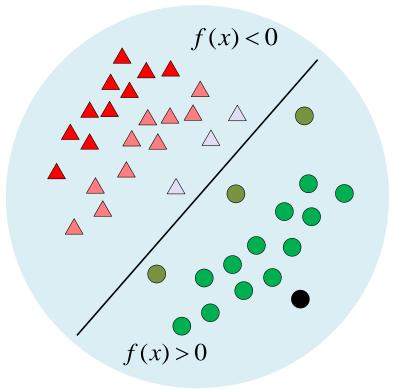
Adversarial

Carlini et al, 2017



Adversarial

A Simplified View of Adversarial Examples



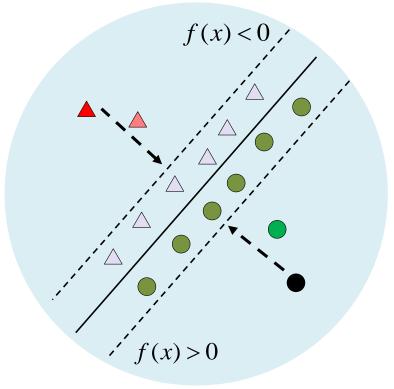
Source example

Medium-confidence legitimate example
 Minimum-confidence legitimate example
 Minimum-confidence adversarial example
 Medium-confidence adversarial example
 Maximum-confidence adversarial example

A high-level illustration of the adversarial example generation

Adversarial Active Learning

We gather a set of "useful examples" to train a substitute model with the performance similar to the black-box model.



- Source example
- Medium-confidence legitimate example
- Medium-confidence adversarial example
- Maximum-confidence adversarial example
- Minimum-confidence legitimate example
 Minimum-confidence adversarial example

"Useful examples"

Illustration of the margin-based uncertainty sampling strategy.

FeatureFool: Margin-based Adversarial Examples

To reduce the scale of the perturbation, we further propose a feature-based attack to generate more robust adversarial examples.

Attack goal: Low confidence score for true class (we use M to control the confidence score).

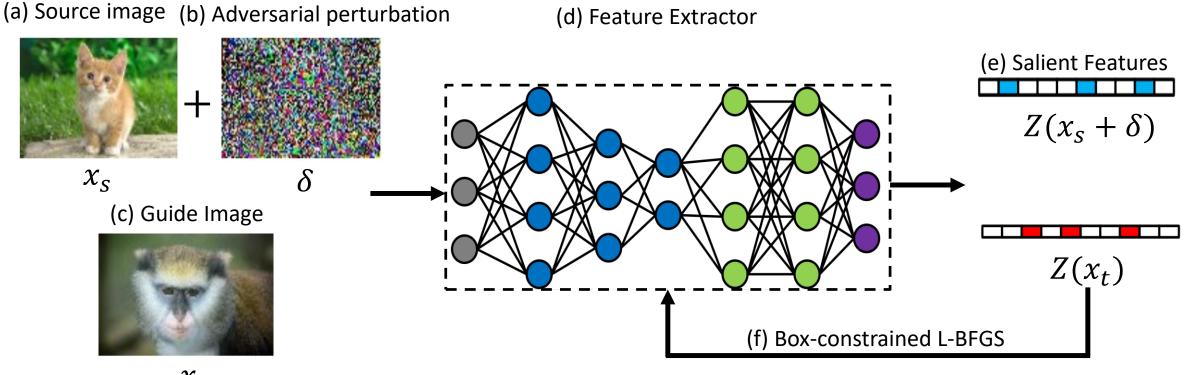
minimize $d(x'_s, x_s) + \alpha \cdot loss_{f,l}(x'_s)$ such that $x'_s \in [0,1]^n$

For the triplet loss $loss_{f,l}(x'_s)$, we formally define it as:

 $loss_{f,l}(x'_s) = \max(D(\emptyset_K(x'_s), \emptyset_K(x_t)) - D(\emptyset_K(x'_s), \emptyset_K(x_s)) + M, 0)$

In order to solve the reformulated optimization problem above, we apply the boxconstrained L-BFGS for finding a minimum of the loss function.

FeatureFool: A New Adversarial Attack



 x_t

(1) Input an image and extract the corresponding n-th layer feature mapping using the feature extractor (a)-(d);

- (2) Compute the class salience map to decide which points of feature mapping should be modified (e);
- (3) Search for the minimum perturbation that satisfies the optimization formula (f).

Adversarial

FeatureFool: A New Adversarial Attack

Source

Adversarial

Source

Adversarial Guide

Guide

Source



Happy: Happy: 0.98 🗸 0.01 ×

19

MLaaS Model Stealing Attacks

Our attack approach

- Use all adversarial examples to generate the malicious inputs;
- Obtain input-output pairs by querying black-box APIs with malicious inputs;
- Retrain the substitute models which are generally chosen from candidate Model Zoo.

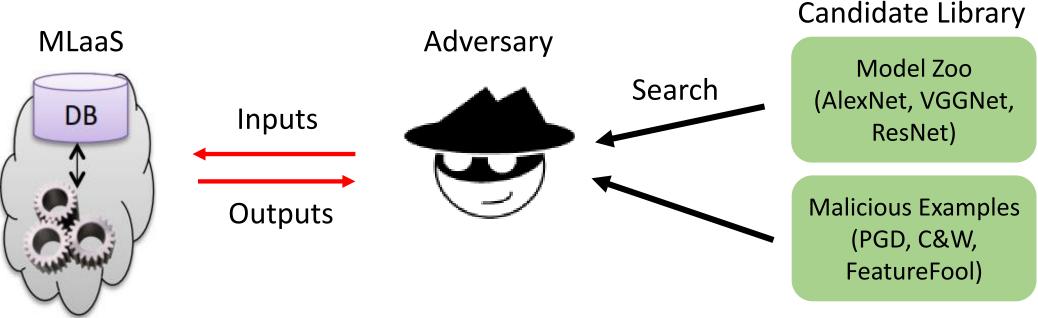
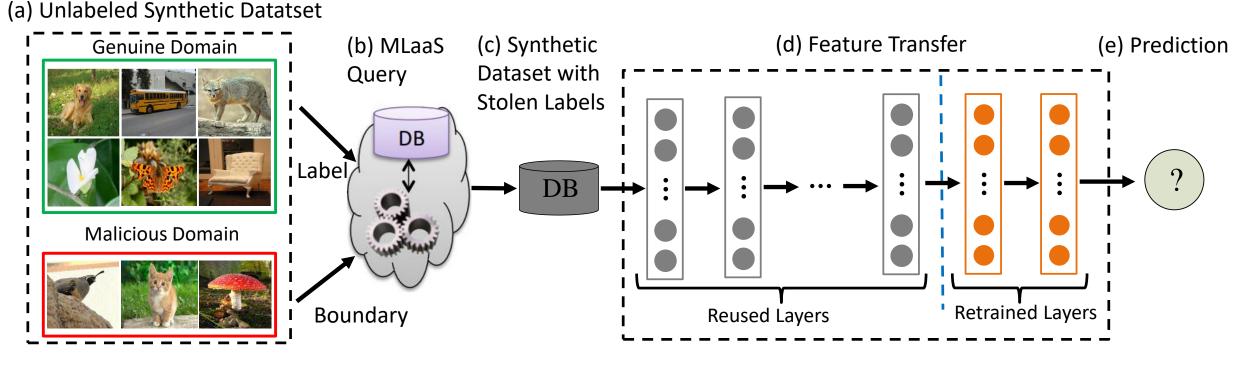


Illustration of the proposed MLaaS model stealing attacks

MLaaS Model Stealing Attacks

Overview of the transfer framework for the model theft attack



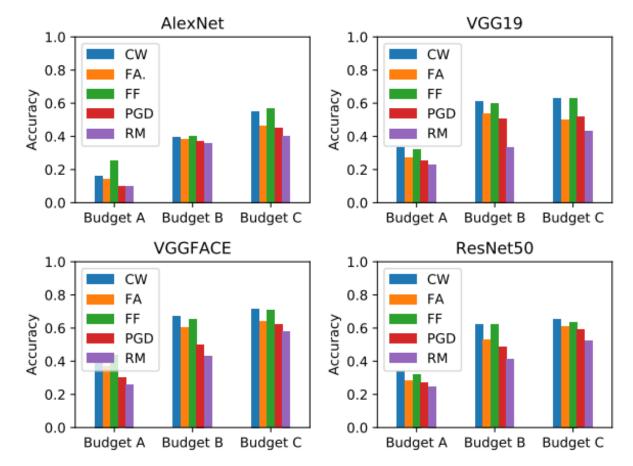
••••• Layer copied from Teacher
••••• Layer trained by Student (Adversary)

(1) Generate unlabeled dataset (2) Query MLaaS (3) Use transfer learning method to retrain the substitute model

Example: Emotion Classification

Procedure to extract a copy of the Emotion Classification model

- 1) Choose a more complex/relevant network, e.g., VGGFace
- 2) Generate/Collect images relevant to the classification problem in source domain and in problem domain (relevant queries)
- 3) MLaaS query
- 4) Local model training based on the cloud query results



Architecture Choice for stealing Face++ Emotion Classification API (A = 0.68k; B = 1.36k; C = 2.00k)

Experimental Results

Adversarial perturbations result in a more successful transfer set.

In most cases, our FeatureFool method achieves the same level of accuracy with fewer queries than other methods

Service	Model	Dataset						
		Queries	RS	PGD	CW	FA	FF	Price (\$)
Microsoft	Traffic	0.43k	10.21%	10.49%	12.10%	11.64%	15.96%	0.43
		1.29k	45.30%	59.91%	61.25%	49.25%	66.91%	1.29
		2.15k	70.03%	72.20%	74.94%	71.30%	76.05%	2.15
	Flower	0.51k	26.27%	27.84%	29.41%	28.14%	31.86%	1.53
		1.53k	64.02%	68.14%	69.22%	68.63%	72.35%	4.59
		2.55k	79.22%	83.24%	89.20%	84.12%	88.14%	7.65

Comparison of performance on the victim model (Microsoft) and their local substitute models.

Comparison with Existing Attacks

Our attack framework can steal large-scale deep learning models with high accuracy, few queries and low costs simultaneously.

The same trend appears while we use different transfer architectures to steal black-box target model.

Proposed Attacks	Parameter Size	Queries	Accuracy	Black-box?	Stealing Cost
F. Tramer (USENIX'16)	~ 45k	~ 102k	High	V	Low
Juuti (EuroS&P'19)	~10M	~ 111k	High	\checkmark	-
Correia-Silva (IJCNN'18)	~ 200M	~66k	High	\checkmark	High
Papernot (AsiaCCS'17)	~ 100M	~7k	Low	\checkmark	-
Our Method	~ 200M	~3k	High	V	Low

A Comparison to prior works.

Evading Defenses

Evasion of PRADA Detection

- Our attacks can easily bypass the defense by carefully selecting the parameter M from 0.1 D to 0.8 D.
- Other types of adversarial attacks can also bypass the PRADA defense if δ is small.

	Queries made until detection							
Model (δ value)	PGD	CW	FA	FF				
				M=0.8D	M=0.5D	M=0.1D		
Traffic ($\delta = 0.92$)	missed	missed	missed	missed	150	130		
Traffic ($\delta = 0.97$)	110	110	110	110	110	110		
Flower ($\delta=0.87$)	110	missed	220	missed	290	140		
Flower ($\delta=0.90$)	110	340	220	350	120	130		
Flower ($\delta=0.94$)	110	340	220	350	120	130		

Conclusion

Black-box MLaaS model stealing is possible and cheap

Protection and security should be considered in AI applications

• Future work will focus on AI chip and AI accelerators

Thanks! Yier Jin @jinyier yier.jin@ece.ufl.edu