Hacking the Supply Chain

The Ripple20 Vulnerabilities Haunt Hundreds of Millions of Critical Devices
Black Hat USA 2020

JSOF

Who are we?

SOF is a software security consultancy

 Shlomi Oberman, co-founder, JSOF
* Moshe Kol, Security researcher, JSOF; Finder of Ripple20

* Ariel Schon, Security researcher, JSOF

Agenda
* Ripple20
* CVE-2020-11901

e Exploiting CVE-2020-11901

Ripple20

* Series of 19 zero-day vulnerabilities in Treck TCP/IP*

 Amplified by the supply chain

e 100’s of millions of devices

* Medical, ICS, Home, Enterprise, Transportation, Utilities

Ripple20

CVE-2020-11896
CVE-2020-11897
CVE-2020-11898
CVE-2020-11899
CVE-2020-11900

CVE-2020-11901
CVE-2020-11902
CVE-2020-11903
CVE-2020-11904
CVE-2020-11905

CVE-2020-11906
CVE-2020-11907
CVE-2020-11908
CVE-2020-11909
CVE-2020-11910

e 4 critical remote code execution vulnerabilities

CVE-2020-11911
CVE-2020-11912
CVE-2020-11913
CVE-2020-11914

Ripple20

CVE-2020-11896
CVE-2020-11897
CVE-2020-11898
CVE-2020-11899
CVE-2020-11900

CVE-2020-11901
CVE-2020-11902
CVE-2020-11903
CVE-2020-11904
CVE-2020-11905

CVE-2020-11906
CVE-2020-11907
CVE-2020-11908
CVE-2020-11909
CVE-2020-11910

8 medium-high severity vulnerabilities

CVE-2020-11911
CVE-2020-11912
CVE-2020-11913
CVE-2020-11914

100’s of Millions of Devices Affected

@ @ Roriowett,,

Schneider xerox @) DIGI CAT

i @

CISCO

a Hewlett Packard

And many more...

100’s of Millions of Devices Affected

Medical Printers Utilities Transportation
(&) CP 1l 4-‘?:'\ =
i ::: i 'Ef
E co—] mm = m
Networking Datacenter Smart Industrial
Buildings

e Assumption: Every mid-large US organization has one

Supply chain

B> @ »&=-»> &Y
(1) (3 o

LIBRARY OPERATING SYSTEM ON IV PUMP
(SOURCE) SYSTEM MODULE

Supply chain

5] »
(1)

sEEs OF
©) O

LIBRARY OPERATING SYSTEM ON IV PUMP
(SOURCE) SYSTEM MODULE

10

11

http://flaticon.com/

Vulnerabilities

http://flaticon.com/

Ripple20

http://flaticon.com/

Why Treck TCP/IP?

e Supply chain - mostly unexplored
* 1 vulnerability == multiple products
* Large loT impact

e Zombie vulnerabilities
e Good attack surface

14

Treck TCP/IP

* Treck is a small American company

* Treck TCP/IP is a proprietary TCP/IP stack; Available >20 years

* Embedded devices and RTOS
* VVery configurable. Each Treck instance is different.

* Strategically located at the start of a long supply-chain

15

Ripple20 Research

* Reverse engineering of 6 different devices with multiple versions
* Every device has a different configuration

* Ongoing research Sep’19 - Jun’20 (9 months)

* Some strange architectures and firmwares involved

2 whitepapers released

16

About CVE-2020-11901

* Critical vulnerabilities in Treck’s DNS Resolver component.
* Once successfully exploited, allows for remote code execution.
e Can traverse NAT boundaries.

* 4 vulnerabilities and 1 artifacts.
* Vary over time and vendor.

17

CVE-2020-11901

AKA “the DNS bugs”

DNS Primer: The Basics

* The DNS protocol maps between domain names and IP addresses.
* Client resolves a name by issuing a query to a DNS server.
 The DNS server looks up the name and returns a response.

Name: www.example.com

Type: A
Query
Client DNS Server
e S Response
Name: www.example.com
Type: A
TTL: 86400

Value: 93.184.216.34
19

DNS Primer: Record Types

* DNS servers can return multiple answers in the same DNS response.

* An answer is specified as a resource record:

NAME TYPE CLASS TTL RDLENGTH RDATA
(var) (2 bytes) (2 bytes) (4 bytes) (2 bytes) (var)

* Questions and answers have a type. Common types include:

20

Type Description

A |IPv4 address for the queried domain.
CNAME Alias (canonical name).

MX Domain name of a mail server for the queried domain.

Domain Names Encoding

 Domain names are encoded as a sequence of labels.
* Each label is preceded by a length byte.
* Maximum label length is 63.

wwwexampl

length length length end

21

DNS Message Compression

 Compression is achieved by replacing a sequence of labels with a
pointer to prior occurrence of the same sequence.

%) 1 2 3 4 5 6 7 8 9 a b
+0 Oxabcd Ox8180 0x0001 0x0001 0x0000 Ox0000
+0XC 5 g m a i 1 h C 0 m h@
+0x18 | oxof 0x0001 OXxcO | Bx0c Ox000f 0x0001 0x000151
0X0009 0x0000 s oxco | oxec

 Compression pointer is encoded in two bytes, the first begins with 11.
0 2 16

11 offset

22

DNS Parsing Logic: Type MX

if (cacheEntryQueryType == DNS_TYPE_MX && rrtype == DNS_TYPE MX) {
addr_info = tfDnsAllocAddrInfo();
if (addr_info != NULL) {
/* copy preference value of MX record */
memcpy(&addr info->ai mxpref, resourceRecordAfterNamePtr + 10, 2);
G /* compute the length of the MX hostname */
labellLength = tfDnsExplLabellLength(resourceRecordAfterNamePtr + Oxc, pktDataPtr);
addr_info->ai_mxhostname = NULL;
if (labelLength != 0) {
/* allocate buffer for the expanded name */
e asciiPtr = tfGetRawBuffer(labellLength);
addr_info->ai_mxhostname = asciiPtr;
if (asciiPtr != NULL) {
e /* copy MX hostname to “asciiPtr® as ASCII */
tfDnsLabelToAscii(resourceRecordAfterNamePtr + Oxc, asciiPtr, pktDataPtr);
/¥ ... */

*Pseudo-code

DNS Label Length Calculation

ttl16Bit tfDnsExplLabellLength(tt8BitPtr labelPtr, tt8BitPtr pktDataPtr){
tt8Bit currlLabellength;
ttl6Bit i = 0, totallLength = 0;

while (labelPtr[i] != 0) { Reads the current
currLabellLength = labelPtr[i]; <€ label length

if ((currLabellLength & 0xc@) == 0) {

totalLength += currLabellLength + 1; Handles the common
i += currlLabellLength + 1; case: no compression

} else {
newLabelPtr = pktDataPtr + (((currLabellLength & ©x3f) << 8) | labelPtr[i+1]);
if (newLabelPtr >= labelPtr) {
return ©; Reads the

} compression offset
labelPtr = newLabelPtr;

i=0; Only allows jumping
} backwards

}
return totallLength;

*Pseudo-code

Vulnerability #1: Read Out-Of-Bounds

 tfDnsExpLabellLength might read data out of the packet buffer
while iterating over the length bytes (stops at a zero length byte).

e Could result in denial-of-service (e.g., read from unmapped page).

* Information leakage:
e tfDnsLabelToAscii has no bounds check either.
* Data from the heap could be interpreted as an MX hostname.
e Data is leaked when the client tries to resolve the MX hostname.

* Affects Treck version 4.7+, fixed later. (TGN
\.,

 Sweet! but we want RCE...

25

More Issues with tfDnsExplLabellLength

e Maximum domain name of 255 characters is not enforced.

* Does not validate the characters of the domain name: should be
alphanumeric and ‘-" only.

* totalLength variable is stored as an unsigned short (tt16Bit).

ttl6Bit tfDnsExplLabellLength(tt8BitPtr labelPtr, tt8BitPtr pktDataPtr){

tt8Bit currLabellength;
ttl6Bit i = 0, totallLength = 0;

/* oo %/
return totallLength;

26

More Issues with tfDnsExplLabellLength

e Maximum domain name of 255 characters is not enforced.

* Does not validate the characters of the domain name: should be
alphanumeric and ‘-" only.

* totalLength variable is stored as an unsigned short (tt16Bit).

W

10W/AREWE
(I%f@(_ ET\THATD

27

Vulnerability #2: Integer Overflow

* We need to construct a name whose length is larger than 65536.

* Can we overflow the totalLength variable within a DNS response
packet?

* Yes! We use the DNS compression feature to achieve this.
* |dea: nested compression pointers.

* Two challenges:
* Maximum size of the DNS response packet allowed is 1460 bytes.
* We can only jump backwards from our current label pointer.

28

Vulnerability #2: Integer Overflow

%) 1 2 3 4 5 6 7 8 9 a b C d e f
+0 of | of | of | of | of | ©of | ©of | ©f | ©f | ©f | ©of | ©f | ©of | ©of | of | of
+16 of | of | of | of | of | of | ©of | ©f | ©of | ©f | ©of | ©f | ©of | ©of | of | of
+32 of | of | of | of | of | of | of | ©f | ©of | ©of | ©of | ©of | of | of | of | of
+48
+64
+80
+96
+112

totalLength=0

branch byte
compression pointer

29

Vulnerability #2: Integer Overflow

© 1 2 3 4 5 6 7 8 9 a b ¢ d e f S
+0 of | of | of | of | of | of | of | of | of | of | of | of | of | of expansion
+16 | of | of | of | of | of | of | of | of | of | of | of | of | of | of | of | of UAC
232 | of | of | of | of | of | of | of | of | of | of | of | of | of | of | oF | oF
+48 of | of | o | of
+64 of | of | oF | oF
+80 of | of etc gf
+96 eb | oc | O*d ge <« branch
+112 0 Qe

compression pointer

H guanch, byte totallength= a8% compression

30

. Integer Overflow

Vulnerability #2

Start

C

9

w0 <

C (@)

© o c

O (4]

x @ o

L C o)

Y- Y- LY LY |4 | Q Q
@I'@I'@Iv@ l'@lv@ Ive o

+0
+16
+32
+48
+64
+80
+96
+112

compression

totallLength= 1502

compression pointer

branch byte

-

31

Vulnerability #2: Integer Overflow

* To maximize the totallLength, we used the maximum label length
63 (0x3T) instead of Ox0f shown in the example.

e Using this construction, we reached a name of length ~72700 bytes,
overflowing the totallLength variable.

e We have an RCE candidate ©

e Can be triggered in response to every query type supported - using
CNAME records.

e Affects Treck versions <= 6.0.1.66.

32

Bad Fix

Bad Fix for the Read Out-Of-Bounds Vulnerability

33

Fixing the Read Out-Of-Bounds

if (RDLENGTH <= remaining size) {
labelEndPtr = resourceRecordAfterNamePtr + 10 + RDLENGTH;
if (cacheEntryQueryType == DNS_TYPE MX && rrtype == DNS_TYPE_MX) {
addr_info = tfDnsAllocAddrInfo();
if (addr_info != NULL && RDLENGTH >= 2) {
/* copy preference value of MX record */
memcpy (&addr_info->ai _mxpref, resourceRecordAfterNamePtr + 10, 2);
/* compute the length of the MX hostname */
labellength = tfDnsExpLabellLength(resourceRecordAfterNamePtr+0xc,dnsHeaderPtr,labelEndPtr);
addr_info->ai_mxhostname = NULL;
if (labellLength != 0) {
/* allocate buffer for the expanded name */ When thnsExpLabelLength reaches

asciiPtr = tfGetRawBuffer(labellLength); labelEndPtr, it stops processing (w/o error)

addr_info->ai_mxhostname = asciiPtr; and returns the current totalLength.
if (asciiPtr != NULL) {
/* copy MX hostname to "asciiPtr as ASCII */
tfDnsLabelToAscii(resourceRecordAfterNamePtr + Oxc, asciiPtr, dnsHeaderPtr, 1, 0);
/* .00 */

*Pseudo-code

Vulnerability #3: Bad RDLENGTH

e labelEndPtr is calculated based on the RDLENGTH field of the
current resource record.

* RDLENGTH is attacker-controlled! Oops...

NAME TYPE | CLASS TTL RDLENGTH RDATA

example.com | MX IN 86400 26 7 0 OHS m|t pe Xla|m|p|l ec

‘ TlabelEndPtr'

 tfDnsExpLabellLength returns 5;
e tfDnsLabelToAscii will copy the entire MX hostname.

35

Artifact: Memory Leak

if (RDLENGTH <= remaining size) {
labelEndPtr = resourceRecordAfterNamePtr + 10 + RDLENGTH;

if (cacheEntryQueryType == DNS TYPE MX && rrtype == DNS_TYPE_MX) { .
addr info = tfDnsAllocAddrInfo(); < addl’-‘lnl'ro StrL:jcture
if (addr _info != NULL && RDLENGTH >= 2) { Is allocate

/* copy preference value of MX record™s
memcpy (&addr_info->ai _mxpref, resourceRecOndAfterNamePtr + 10, 2);
/* compute the length of the MX hostname */
labellength = tfDnsExpLabellLength(resourceRecordAftexNamePtr+0xc,dnsHeaderPtr,labelEndPtr);
addr_info->ai_mxhostname = NULL;
if (labellLength != 0) { <
/* allocate buffer for the expanded name */
asciiPtr = tfGetRawBuffer(labellLength);
addr_info->ai_mxhostname = asciiPtr;
if (asciiPtr != NULL) {
/* copy MX hostname to "asciiPtr as ASCII */
tfDnsLabelToAscii(resourceRecordAfterNamePtr + Oxc, asciiPtr, dnsHeaderPtr, 1, 0);
/* .00 */

addr_info is not
freed on error flows

*Pseudo-code

Artifact: Memory Leak

 An addrinfo structure can be leaked during MX parsing logic.
e Size of the leak ©x3c.

 Comes in handy when exploiting heap vulnerabilities.

37

CVE-2020-11901: Summary

Treck Vuln #1: Vuln #2: Vuln #3: Artifact:

Version Read OOB Integer Overflow Bad RDLENGTH Memory Leak

old v/
New V
/ Affected A device can be affected by one or more vulnerabilities

X Not affected depending on the exact version.

38

Exploitation

Exploiting CVE-2020-11901 on Schneider Electric UPS Device

39

Target Device

e Schneider Electric APC UPS network card

* Turbo186 (x86-based)
e 16-bit Real Mode
* No ASLR or DEP
* Weird segmentation (shift 8 instead of 4)

* No debugging capabilities
* Only limited crashdumps

40

e e

L o

—

Target Device

e Schneider Electric APC UPS network card

* Turbo186 (x86-based)

* 16-bit Real Mode
* No ASLR or DEP
* Weird segmentation (shift 8 instead of 4)

* No debugging capabilities

41

* Only limited crashdumps

Current stack at

46f29a00000087c01
0000000008850104
0f0401003e014c00
3e01b81f0f04ee75
003833313980530a
1800180000003103
3900c205d1065004
66c40T0401049200
0eB6920466c40800
36068b088c00O8304
00000000302e5151
0000000Ran750104
2dol5feeeeeelbel
£800ce0000000000
6100000000000000
1b017c019a00cep0

Register Set

AX = 0120
BX = 0120
CX = fooe
DX = 07b6
SI = 017c
DI = 0000
BP = @5fe
CS = co46
DS = @elb
ES = @7b6

_SS: SP @6dl: @57e

avve1285b81fofe4
aab53cPee3c8bB81f
c408a000d2057coc
0f04450001003e01
530af80000000000
oooedleoffffooon
2bc4000052042bc4
00007c010e068604
00008cPO59010f04
2bc46b002d018c00
0000000000
6a0666018c005411
0b0378017c010200
0000005000000
54112d017a064710
0000000V aB79822

Vulnerability Recap

* Primitive: heap overflow via DNS response parsing
* Only alpha-numeric characters are copied*

* We will exploit using “bad RDLENGTH” (#3)

Treck Version Vuln #1: Vuln #2:

Read OOB Integer Overflow

Vuln #3:
Bad RDLENGTH

New

old v/ v/
X v/

42

Exploitation Technique

* We can overflow through all DNS response types
* When the device boots*, 3 MX requests are transmitted

* Interactivity in exploits is advantageous
* Allows easier shaping

* Crashing is favorable in order to reach deterministic state
* No penalty* for crashing the network card

44

Overflow Target

tsDnsCacheEntry

o tsDnsCacheEntr‘y tsDnsCacheEntry *dnscNextEntryPtr
* Contains a list of addrinfo structs tsDnsCacheEntry *dnscPrevEntryPtr
e addrinfo holds the contents of a addrinfo *dnscAddrInfoPtr

DNS answer (name, IP address, ...)

char *dnscRequestStr

* Has many pointers and interesting fields . . .t orcode

* Many references in DNS response parsing

short dnscFlags

45

CNAME Processing

if (found_cname) {
// Get the first addrinfo struct from "tsDnsCacheEntry"
first _addr_info = t_dns_cache_entry->dnscAddrInfoPtr;
if (first_addr_info) {
// get CNAME name length from the packet
length = tfDnsExplLabellLength(cname_rdata_ptr, packet ptr, cname rdata _end ptr);
if (length) {
// allocate
cname_label buffer = tfGetRawBuffer(length);
if (cname_label buffer) {
// copy to new buffer
tfDnsLabelToAscii(cname rdata ptr, cname label buffer, packet ptr, 1, 0);
first _addr_info->ai _canonname = cname_label buffer;

*Pseudo-code

Controlled Pointer Write

* We can write a 4-byte pointer
 (Offset, Segment)

* To any alpha-numeric address

* Relatively strong exploitation primitive

47

Linear Overflow

e Overflow is from end of MX name buffer

Pre-
Size

MX Name Buffer

48

tsDnsCacheEntry

Post-
Size

Linear Overflow

* Overflow is from end of MX name buffer

* tsDnsCacheEntry allocated on DNS request creation

e Overflow is from MX name buffer, allocated on response

* tsDnsCacheEntry must be placed after MX name buffer

MX Name Buffer

49

Heap Shaping

* A specific hole pattern would allow us to overflow tsDnsCacheEntry
* Because of tight-fit preference

Hole #1 => MX name buffer separator | Hole #2 =>tsDnsCacheEntry separator ... Tail

e Shaping using a memory leak artifact and name allocation

50

Pointer Write Limitations

* CNAME pointer written to address in tsDnsCacheEntry

e Overflow is only alpha-numeric, with trailing null-byte
e Can be used as segment MSB

* Nothing placed in a strictly alpha-numeric address offset segment

 Combine two alpha-numeric bytes => Non-alpha-numeric segment

Ox004B << 8 = 0x4B00O

+
SegrLent 0x4141 «— Offset
Ox8C41 > 008C:0041

* This allows us to overwrite heap utility functions

51

Overwriting a Far Call

* Far calls in x86 are encoded with a pointer

e Patching a far call using our primitive results
in the CNAME buffer being executed

offset segment

* We patch a far call in free() error flow
 Called when metadata corruption is detected

52

Recap

MX Name Buffer tsDnsCacheEntry dnscAddrinfoPtr

53

Recap

NAME TYPE RDLENGTH RDATA
example CNAME 14 E|(V|I|L PlA D
malloc(14);
1234:5678| => “EVIL.PAYLOAD”
sub_free:
e 1234:5678
MX Name Buffer call -catedB0d—

54

addrinfo *dnscAddrInfoPtr

004B:4141

Payload Trigger

* free() error flow will be triggered on overflown MX name free

* CNAME buffer contains crafted alpha-numeric shellcode
e 2-stage decoder

55

Payload Trigger

e free() error flow will be triggered on overflown MX name free

* CNAME buffer contains crafted alpha-numeric shellcode
e 2-stage decoder

* We have achieved arbitrary payload execution!

DEMO

JSOF

Thanks for listening!

info@jsof-tech.com

