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Abstract
The reliance of popular programming languages such as

Python and JavaScript on centralized package repositories
and open-source software, combined with the emergence of
code-generating Large Language Models (LLMs), has created
a new type of threat to the software supply chain: package
hallucinations. These hallucinations, which arise from fact-
conflicting errors when generating code using LLMs, repre-
sent a novel form of package confusion attack that poses a
critical threat to the integrity of the software supply chain.
This paper conducts a rigorous and comprehensive evaluation
of package hallucinations across different programming lan-
guages, settings, and parameters, exploring how a diverse set
of models and configurations affect the likelihood of generat-
ing erroneous package recommendations and identifying the
root causes of this phenomenon. Using 16 popular LLMs for
code generation and two unique prompt datasets, we generate
576,000 code samples in two programming languages that
we analyze for package hallucinations. Our findings reveal
that that the average percentage of hallucinated packages is at
least 5.2% for commercial models and 21.7% for open-source
models, including a staggering 205,474 unique examples of
hallucinated package names, further underscoring the severity
and pervasiveness of this threat. To overcome this problem,
we implement several hallucination mitigation strategies and
show that they are able to significantly reduce the number of
package hallucinations while maintaining code quality. Our
experiments and findings highlight package hallucinations as
a persistent and systemic phenomenon while using state-of-
the-art LLMs for code generation, and a significant challenge
which deserves the research community’s urgent attention.

1 Introduction

Recent advances in generative AI, powered by Large Lan-
guage Models (LLMs) like GPT-4 [1] and LlaMA [60], have
revolutionized AI capabilities across modalities, excelling in
a wide range of tasks such as image synthesis, text generation,

and natural language understanding. One such application is
code generation, which is typically accomplished by first train-
ing or fine-tuning an LLM using vast amounts of program-
ming data found on online repositories (e.g., GitHub), techni-
cal forums, and documentation. Both commercial/black-box
(e.g., GPT-4 [1], Claude [3]) and open-source (e.g., CodeL-
lama [53], DeepSeek Coder [14]) varieties of such code-
generating LLMs are readily available and are extensively
used by both novice and expert programmers in their coding
workflows to increase productivity. Recent studies indicate
that up to 97% of the developers are using generative AI to
some degree and that approximately 30% of code written to-
day is AI-generated, reflecting significant perceived gains in
efficiency and convenience [36, 54].

One critical shortcoming of LLMs is a phenomenon re-
ferred to as hallucination. Hallucinations are outputs pro-
duced by LLMs that are factually incorrect, nonsensical, or
completely unrelated to the input task. Hallucinations present
a significant obstacle to the effective and safe deployment of
LLMs in public-facing applications due to their potential to
generate inaccurate or misleading information. As a result,
there has been increased efforts to research the detection and
mitigation of hallucinations in LLMs [17,22]. However, most
existing research has focused only on hallucinations in clas-
sical natural language generation and prediction tasks such
as machine translation, summarization, and conversational
AI [7, 19, 33, 45]. The occurrence and impact of hallucina-
tions during code generation, particularly regarding the type
of hallucinated content and its implications for code secu-
rity, are still in the nascent stages of research. Recently, Liu
et al. [39] have shown that popular LLMs (e.g., ChatGPT,
CodeRL, and CodeGen) significantly hallucinate during code
generation and have established a taxonomy of hallucinations
in LLM-generated code.

In this work, we focus on a specific type of hallucination
during code generation called package hallucination. Pack-
age hallucination occurs when an LLM generates code
that recommends or contains a reference to a package that
does not actually exist. An adversary can exploit package
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hallucinations, especially if they are repeated, by publishing a
package to an open-source repository with the same name as
the hallucinated or fictitious package and containing some ma-
licious code/functionality. As other unsuspecting and trusting
LLM users are subsequently recommended the same fictitious
package in their generated code, they end up downloading the
adversary-created malicious package, resulting in a success-
ful compromise. This compromise can then spread through
an entire codebase or software dependency chain, infecting
any code that relies on the malicious package. This is a varia-
tion of the classical package confusion attack that has been
enabled by code-generating LLMs.

Package confusion attacks, through techniques such as ty-
posquatting (i.e., creating packages with names similar to
popular ones to deceive users) and name similarity, have been
a long-standing issue in the open-source software commu-
nity [27, 47, 55]. Package hallucinations by code-generating
LLMs threaten to exacerbate the problem by exposing an addi-
tional threat surface for such attacks. Trivial cross-referencing
methods (i.e., comparing a generated package name with a list
of known packages) are ineffective for detecting a package
hallucination attack, as an adversary may already have pub-
lished the hallucinated package with malicious code. Open-
source repositories make no guarantee about the safety of
hosted content; the mere presence of a package in an open-
source repository does not confirm its credibility. A recent
blog post [29] suggests that LLMs are prone to package hal-
lucinations and provides a first approximation of their preva-
lence, but the extent to which this phenomenon occurs in
state-of-the-art (SOTA) commercial and open-source LLMs,
the nature of these hallucinations, and the effectiveness of
potential mitigation measures have not been thoroughly in-
vestigated before.

In this paper, we conduct the first systematic study of the
frequency and nature of package hallucinations across a vari-
ety of code-generating LLMs, operating under a diverse set
of model settings and parameters. We specifically make the
following novel contributions:

• Characterizing the prevalence of package hallucina-
tions by code-generating LLMs and related functional
attributes: We first comprehensively analyze the preva-
lence of package hallucinations in Python and JavaScript
code generated by popular commercial and open-source
LLMs. We also examine and characterize commonly ob-
served LLM behaviors related to package hallucinations,
including hallucination repetition, output verbosity, and the
ability of these models to detect their own hallucinations.

• Analyzing the effect of fine-grained changes to model
settings on package hallucinations: We further study how
specific model settings, such as training data recency, model
temperature, and decoding strategies affect the occurrence
and nature of package hallucinations.

• Characterizing common traits of the generated halluci-

nated packages: We carefully study several key properties
of the hallucinated packages, such as their semantic sim-
ilarity to popular packages, their propensity of occurring
across different models, and the influence of packages that
were recently removed/deleted (from the corresponding
repositories) on the hallucination rate, among others.

• Testing of mitigation strategies: We propose and compre-
hensively evaluate several techniques to effectively mitigate
package hallucinations in LLM-generated code while main-
taining the ability to produce effective code.

• Publicly-accessible datasets for advancing research: We
make publicly available two novel datasets (one Python and
one JavaScript) of 19,500 coding prompts for a wide range
of coding tasks and 586,000 generated coding samples for
fine-tuning/analysis. 1

2 Background and Related Work

In this section, we provide a brief background on open-source
software security, code-generating LLMs, and the issue of
hallucinations in LLMs.

2.1 Background

Package Confusion Attacks in Open-source Software
Repositories. Modern software development has seen an
increased reliance on open-source software packages and
libraries that are publicly-available on centralized reposito-
ries. Many modern programming languages now rely on such
centralized package repositories, with PyPI [9] (for Python)
and npm [48] (for JavaScript) being the two most popular
repositories. The open nature of these repositories, where any-
one can upload new code packages/libraries, makes them an
attractive platform for malware distribution. For instance, a
total of 245,000 malicious code packages were discovered in
open-source software repositories in 2023 alone [54].

Once a malicious package is uploaded, adversaries em-
ploy various techniques to trick users into downloading it,
thereby integrating it into their codebases and dependency
chains. These attacks often involve deliberately naming mali-
cious packages to mimic legitimate ones, a tactic known as
a package confusion attack [47]. Package confusion attacks
can be broadly categorized into typosquatting, combosquat-
ting, brandjacking, and similarity attacks [28], and are distinct
from other types of software supply chain attacks such as cor-
rupting legitimate packages or developing unique malicious
packages from scratch as part of a long-term campaign. More
than 1,200 package confusion attacks have been documented
in the last six years [47], including the notable PyTorch com-
promise [55] and the Lazarus Group campaign [27].

1All code and datasets can be found at: https://zenodo.org/records
/14676377 or https://github.com/Spracks/PackageHallucination

https://zenodo.org/records/14676377
https://zenodo.org/records/14676377
https://github.com/Spracks/PackageHallucination


Packages/libraries often rely on other packages to function,
thus creating extensive dependency trees. Infecting a single
package in this dependency chain can be sufficient to compro-
mise an entire software product or ecosystem [26, 47]. Public
OSS repositories such as PyPI and npm have implemented
various measures, including two-factor authentication, names-
pace protection, and software signing to mitigate the distri-
bution of malicious packages [61, 66]. However, it remains
unclear whether these repositories utilize any scan-based tech-
niques for detecting malicious code, and they often do not
disclose the full list of removed packages.

Automated Code Generation using LLMs. Modern LLMs
continue to demonstrate advanced source-code generation
capabilities, with success rates in correctly answering cod-
ing prompts surging from 25% in June 2021 to 96% by April
2024 [6]. With the increasing use of these models for software
development, concerns are increasing about the likelihood of
producing insecure or incorrect code that could create vul-
nerabilities in deployed applications. Early versions of code-
generating LLMs were found to generate code containing
vulnerabilities listed in the MITRE Top-25 Common Weak-
ness Enumeration (CWE) 40% of the time [51]. Moreover,
recent research has shown that AI-assisted programming not
only results in less secure code, but also instills a false sense
of security among developers [52].

Hallucinations by LLMs. It has been well documented
that LLMs can unintentionally produce harmful informa-
tion [41, 64], be manipulated for malicious purposes [15, 25],
expose private information [34], and carry inherent biases in
their training data [11]. A related phenomenon is hallucina-
tions, where LLMs generate misleading or entirely fictitious
information. These errors take various forms: the model might
misinterpret the intended input (input-conflicting hallucina-
tion), produce inconsistencies with previous output (context-
conflicting hallucination), or contradict established facts (fact-
conflicting hallucination) [67]. Hallucinations can arise from
three main root causes: (i) data, (ii) training, and (iii) infer-
ence [18]. Data-related hallucinations occur when the source
data itself is flawed with misinformation [37], bias [11], or in-
complete records [50]. Architecture flaws [38] or suboptimal
training objectives [62] during training could also result in
downstream hallucinations, while inference time issues such
as defective coding strategies [16] and imperfect decoding rep-
resentations [5, 42] are other contributors. The probabilistic
nature of LLMs presents a challenge in mitigating halluci-
nations. This nondeterminism, while it fosters creativity and
generates diverse and innovative content, also contributes to
the generation of hallucinated content. Balancing creativity
with accuracy remains a central challenge in deploying LLMs,
underscoring the complexity of developing effective mitiga-
tion strategies.

Package Hallucinations and Security Risks. Package hal-
lucinations, a special form of fact-conflicting hallucinations,

are instances where LLMs generate fictitious (non-existent)
or erroneous package names in the generated source code. As
outlined earlier, an adversary can quickly create malicious
packages (on the appropriate open-source repository) with
the same name as these hallucinated packages, thus effecting
a very simple, yet effective, form of package confusion at-
tack. Unsuspecting users, who trust the LLM output, may not
scrutinize the validity of these hallucinated packages in the
generated code and could inadvertently include these mali-
cious packages in their codebase [52]. This resulting insecure
open-source code also has the potential of being included in
the dependency chain of other packages and code, leading
to a cascading effect where vulnerabilities are propagated
across numerous codebases. The simplicity and scale of such
LLM-enabled package confusion attacks highlight the criti-
cal need for quantifying this existing risk, understanding the
nature of this unique type of hallucination, and developing
effective mitigation techniques that maintain the utility of the
code generated by the LLMs. This is precisely what we aim
to accomplish in this work.

2.2 Related Work

The possibility of code-generating models recommending
malicious or typosquatted packages was first suggested in
2021 as tools such as GPT-3 and Codex were released as
viable code generation platforms [4]. At the time, the risk of
these tools suggesting vulnerable, malicious, or typosquatted
packages was assessed to be low [6]. In particular, the related
but distinct concept of package hallucinations was not explic-
itly considered in this initial risk assessment; either because
such an attack scenario was not considered at all or because
the threat was thought to be negligible. The capabilities of
generative AI agents have advanced significantly since that
introductory evaluation.

Although a comprehensive study on the prevalence of pack-
age hallucinations in LLM-generated code has not been done
previously, a recent blog post by Lanyado [30] outlines the
results of some preliminary tests on commercial LLMs such
as GPT, Gemini, and Cohere. Their testing confirms the pres-
ence of hallucinated packages in the code generated by these
LLMs, but their initial estimate of hallucination rate was 5×
higher than our findings, and they do not consider popular
open-source LLMs or study possible mitigation approaches.
They also fail to systematically characterize the generated hal-
lucinated packages and model properties that have an impact
on hallucinations.

In contrast, we conduct a rigorous and comprehensive eval-
uation across a broader range of models, including the first
analysis of package hallucinations in open-source models of
any kind, at a scale that has not been previously done. To this
end, we provide thorough testing with a larger custom dataset
covering two programming languages (namely, Python and
Javascript), followed by a detailed analysis of the significant
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Figure 1: Exploiting Package Hallucination.

characteristics of this phenomenon.

3 Research Questions

Adversary Model and Assumptions. We assume an adver-
sary who wants to execute a package confusion attack by
leveraging package hallucinations in the code generated by
closed-source and open-source code-generating LLMs (see
Figure 1). The target of the adversary are users who employ
such LLMs for generating code. Here we assume that the
LLM generates code that requires additional packages for the
user to install, which the user does without sufficient veri-
fication of the recommended packages. In other words, the
target users fully trust the LLMs to include only valid package
names in the generated code. We assume that the adversary
has access to the same set of LLMs for code generation as
the target users, and is unable to modify or manipulate the
model and model parameters of these LLMs (e.g., via retrain-
ing or fine-tuning) before they are used by the victims. The
adversary is able to determine a list of hallucinated packages
generated by these LLMs (for example, by cross-referencing
the package repository), and then is able to realize a package
confusion attack by creating a package of the same name on
the corresponding package repositories. These newly created
(and now publicly available) packages by the adversary could
contain malicious code or functionality. Research has shown
that installing open source Python or JavaScript packages
allows the execution of arbitrary code by an attacker [49].
Previous work [30] has also established the viability of such
an attack by publishing a hallucinated package to an open
source repository and demonstrating that the package is ac-
tively downloaded and was incorporated into the dependency
chains of other packages/code.
Research Questions. We now organize our investigation into

the following five broad Research Questions (RQ).

RQ1: How prevalent are package hallucinations while gen-
erating Python and JavaScript code using LLMs? Our aim
here is to thoroughly examine how often package halluci-
nations occur with both widely-used commercial and open-
source LLMs when they generate Python and JavaScript code
across various programming tasks.

RQ2: How are package hallucinations impacted by select
model settings? Here our goal is to comprehensively analyze
how training data and decoding strategies impact the package
hallucinations produced by these code generation LLMs.

RQ3: What are the commonly observed model behaviors re-
lated to package hallucinations? This RQ will exhaustively
study model behaviors such as hallucination repetition by
a single LLM (hallucination persistence) and across multi-
ple LLMs (cross-model hallucinations), output verbosity, and
the ability of LLMs to detect their own hallucinations (after
generation).

RQ4: What are some of the defining properties/attributes
of the observed package hallucinations? The goal of this
RQ is to analyze the properties of the hallucinated packages
such as semantic similarity between hallucinated and popu-
lar packages, number of cross-language hallucinations (i.e.
non-existent packages from the language requested but valid
packages in another programming language), and the number
of generated packages that were recently removed from the
source repositories.

RQ5: Is it possible to effectively mitigate package halluci-
nations using best practices in the literature and knowledge
gained from earlier results? Through this RQ, we will in-
vestigate if code-generating LLMs can be designed to reduce
hallucinations with minimal compromise to code quality. In
this direction, we will study if techniques such as retrieval



augmented generation (RAG) [32], self-detected feedback, de-
coding strategies, and supervised fine-tuning [57] are effective
package hallucination reduction strategies.

4 Experiment Design

To address the RQs outlined above, we design several experi-
ments to repeatedly prompt LLMs to generate code and then
analyze the generated code. Our experimentation pipeline
consists of three distinct phases: (i) prompt dataset genera-
tion, (ii) code generation, and (iii) hallucination detection,
each of which is described next.

4.1 Prompt Dataset

The experiments are designed to exhaustively test each LLM
through a complete range of coding tasks. Existing benchmark
datasets of coding prompts contain only a limited number of
prompts (e.g. only 164 prompts for both EvalPlus [40] and
HumanEval [6]) and lack diversity. Therefore, we create a
new code prompt dataset for our experiment that contains
both breadth and depth in terms of overall number of prompts
and range of topics. Our goal was to develop a dataset that
accurately and comprehensively represents the coding tasks
commonly requested by everyday users. To accomplish this,
we employ two distinct approaches, as described below.

Stack Overflow Dataset. To model the input prompts around
real programmer questions, our first prompt dataset was cre-
ated using Stack Overflow [56] questions across relevant pro-
gramming topics and subject areas. Stack Overflow is a popu-
lar online question-and-answer service for software program-
mers and developers. To capture a wide range of topics, we
utilize the “tag” feature of Stack Overflow, which allows users
to label posts according to a subject matter. We included any
tag that had more than 5,000 questions and was also relevant
to Python or JavaScript (the two programming languages that
we focus on in this work, as detailed in Section 4.2). For each
of the 240 manually selected tags that met this criterion (a
full list of tags can be found with the paper artifacts 1), we
extracted the 20 most upvoted questions, resulting in 4,800
prompts (i.e., 4,800 prompts for Python and 4,800 prompts
for JavaScript).

As more recent data is less likely to be included in the
pre-training data of LLMs, we are also interested in inves-
tigating the temporal correlation between data recency (i.e.,
how recently the question was asked on Stack Overflow) and
model hallucination rate. To enable such an analysis, we ran
two queries on Stack Overflow; one that captured only the
most popular questions in the selected tags from 2023 and
another that captured the most popular questions for all years
prior to 2023. By including the two different ranges of time,
we effectively doubled the original number of prompts, for a
total of 9,600 for each of the two languages.

Not all questions asked on Stack Overflow may involve
coding or require code to answer the question. Rather than at-
tempting to filter out such prompts during the code generation
phase, which is non-trivial and error-prone, the LLM is asked
to answer the question and only provide code if necessary. In
the end, this may result in a slightly lesser number of usable
LLM-generated code samples but is more realistic as LLMs
are expected to accommodate imperfect user inputs.

LLM-generated Dataset. As a majority of the programming
tasks require some library/package, our next idea was to use
the package repositories themselves as a good representation
of the full spectrum of coding topics. Our goal was to
represent as many code generation tasks as possible in one
comprehensive dataset. We take the 5,000 most popular
Python and JavaScript packages (based on the number of
downloads) and scrape the official package description as
listed on PyPI and npm, respectively. These descriptions
are then individually inputted to the Llama-2 70B model
with instructions to generate a coding prompt based on
the package description (the exact prompt available in
Figure 13). This process generated roughly 4,800 prompts
for Python and JavaScript each, resulting in two datasets
of approximately the same size (some packages with no
description or descriptions in a non-English language were
discarded). Similarly to the Stack Overflow dataset, we
doubled the LLM-generated dataset for temporal analysis by
dividing it into two segments: the packages most downloaded
in 2023 and the packages most downloaded prior to 2023.
When a package appears in both sets, we remove the
package from the latter set to ensure that there is no overlap.
Removing duplicates from the latter dataset guarantees that
the remaining packages will be those that have increased in
popularity during the last year, capturing the desired signal.
A truncated list of the LLM-generated dataset can be found
in Appendix A.

For brevity, the two temporally distinct datasets, one from the
past year and one from before 2023, will be referred to as the
’recent’ and ’all-time’ datasets for the remainder of this paper.

4.2 Code Generation
Model Selection. For our experiments, we chose the models
that were the highest ranked on the EvalPlus leaderboard (as
of January 20, 2024) [40]. During the creation of our model
list, we ignored the fine-tuned versions that were ranked below
their corresponding foundational models and only selected
one fine-tuned version of the same foundational model of the
same parameter size [40]. EvalPlus maintains a ranking of
the top performing LLMs for code correctness according to a
rigorous code synthesis evaluation framework. Our goal was
to include a mix of top-performing base models and a few of
the best-performing fine-tuned variants. We also included the
GPT series of models (GPT-3.5, GPT-4, and GPT-4 Turbo) in



our experiments, which currently hold the top rankings on the
leaderboard. GPT models are widely considered as SOTA in
terms of code generation models at the time of writing and add
value to our experiments as representative commercial models.
The models were not modified or altered in any way prior to
testing; they are strictly “off-the-shelf.” Table 1 provides a
complete list of the models that we tested in our experiments.

Table 1: Details of the models that were evaluated.

Model Parameters License Open
Source

ChatGPT 4.0 [1] Unknown Commercial ✗

ChatGPT 4.0 Turbo [1] Unknown Commercial ✗

ChatGPT 3.5 Turbo [4] Unknown Commercial ✗

CodeLlama [53] 7B, 13B, 34B Free ✗

DeepSeek [14] 1.3B, 6.7B, 33B Free ✓
Magicoder [65] 6.7B Free ✓
WizardCoder [43] 34B Free ✓
Mistral [23] 7B Free ✓
Mixtral [24] 8x7B Free ✓
OpenChat [63] 7B Free ✓
WizardCoder-Python [43] 7B Free ✓
CodeLlama-Python [53] 33B Free ✓

Language Selection. In our experiments, we focus on two
of the most popular programming languages, JavaScript and
Python. These languages were chosen due to their overall pop-
ularity (#1 and #2 according to the GitHub 2023 Octoverse
report [12]) and their dependence on open-source reposito-
ries for package management. Other popular programming
languages like Java, C, or C++ do not rely on a centralized
open-source repository, as Python and JavaScript do, which
is a key component of this vulnerability. The open-source
package repositories for these languages, npm and PyPI, rep-
resent ecosystems of 5.1 million and 573 thousand packages,
respectively [58]. Of the 16 total models tested (see Table 1),
14 were tested for both Python and JavaScript, while two
fine-tuned Python-specific models, WizardCoder-Python and
CodeLlama-Python, were only tested for Python.

Testing Environment. All open-source models were tested
using the Hugging Face transformers package and quan-
tized versions of the models, which reduces parameter preci-
sion to boost inference speed and lower memory use without
significantly impacting performance. Specifically, the GPTQ
quantization method was used, which utilizes a one-shot
weight quantization method based on approximate second-
order information that has a negligible effect on the accuracy
of models, making it an ideal choice [10]. Additionally, quan-
tized models better simulate the performance that a typical
user can expect when running models on commercial grade
hardware, making them more accessible and practical for
everyday use.

For testing uniformity, we use the same parameters and

quantization precision for all open-source models, which are
summarized in Appendix C, along with the computing envi-
ronment used. To generate code for our analysis, we query
each LLM (Table 1) with prompts from the two datasets along
with a system message which contains specific instructions
regarding the task and output format. An overview of the pro-
cess, including the system messages used during each step,
is detailed in Appendix B. The experiment generates 19,200
code samples per model (16 Python tests + 14 JavaScript tests
* 19,200 = 576,000 total code samples), which are further
analyzed to determine which packages are required to execute
the generated code.

4.3 Detection Methodology and Heuristics

To detect hallucinated packages, we first need to extract pack-
age names from the LLM output or the generated code sample,
which is non-trivial. Simply parsing the code for “import” or
“require” is not useful, as the arguments in those statements
refer to modules and not packages. There is no way to defini-
tively determine the required packages from a code snippet
alone. A detailed explanation of this problem can be found in
Appendix G. To solve this problem, we employ the following
three heuristics to determine/identify package names in the
generated code:

Heuristic 1. As part of our first heuristic, we parse the gen-
erated Python and JavaScript code for “pip install” and
“npm install” commands, respectively. These commands
look for the specified package in the PyPI/npm repository,
resolve its dependencies, and install everything in the current
Python/JavaScript environment to ensure that future module
requests will work. This is the most straightforward heuristic
for detecting package names (and thus hallucinations), as it
involves explicit commands from the code generation model
for package download/installation. This is significant because
if the referenced hallucinated package was indeed used by
an adversary to execute a package confusion attack, it could
immediately trigger download/install of the malicious code
in the package. Note that we did not directly ask the model
to provide these commands, but allowed them to occur natu-
rally during the generation process. As such, we observed that
these instances (“pip install” and “npm install”) occur
for 7% of the total output.

Heuristic 2. For the second heuristic, each generated code
sample is used as input to the same model that generated it.
The model is then prompted for a list of packages that would
be required to run the given code. Our intuition is to mimic an
actual user/developer who is using LLMs for code generation.
If the user gets an error due to an uninstalled package when
attempting to execute the generated code, they could query
the model for the correct package to install. We wanted to
replicate this intuitive process to identify the package names
required by the generated code.



Heuristic 3. As the third heuristic, we reuse the original
prompt used to generate the code sample as an input to
the model and ask the model to output package names that
would be required to accomplish this coding task. Similarly
to the previous heuristic, this process of extracting package
names simulates another approach users would take to obtain
package names from the model that generated the code, if
the required packages were not mentioned in explicit “pip
install” and “npm install” commands.

Once each model provides specific package names (through
the three heuristics outlined above), we simply compare each
package name to a master list of package names acquired
from PyPI and npm, respectively (each list is as of 10 January,
2024). If a package name is not on the master list, it is consid-
ered a hallucination. We acknowledge the possibility that the
master list of packages obtained from the package repositories
has already been contaminated with malicious hallucinated
packages. It is not possible to guarantee that the master list
actually represents the ground truth of valid packages; how-
ever, the presence of hallucinated packages already in the
master list would actually produce fewer hallucinations, and
therefore our results represent a lower bound of hallucination
rate.

5 Evaluation Results

In this section, we present the results of our experimental
analysis related to RQ1 − RQ4. After using both Python and
JavaScript for RQ1, for RQs 2 through 4, we focus our analy-
sis only on the Python programming language, a subset of the
original models tested, and randomly sampled subsets of our
original datasets. Given the consistent results that we were
able to obtain across both languages for RQ1, we believe that
this narrowed scope of discussion for RQs 2 through 4 should
not compromise the generalizability of the conclusions and
would allow for a deeper analysis of package hallucinations
in a controlled setting. We selected GPT-4 Turbo, GPT-3.5,
CodeLlama 7B, and DeepSeek 6.7B for the in-depth analy-
sis of RQs 2-4, representing the best-performing and most
popular open-source models.

5.1 Prevalence of Package Hallucinations
(RQ1)

In our first experiment, our goal was to quantify the preva-
lence of package hallucinations across different models by
generating and analyzing a large number of code samples. We
conducted 30 tests (using 16 models for Python and 14 models
for JavaScript, as described in Table 1) producing a combined
576,000 code samples using both the Stack Overflow and
LLM-generated datasets (Section 4.1). Each code sample was
evaluated for hallucinations according to the heuristics de-
fined in Section 4.3, which include parsing the generated code
and prompting the model for packages twice per code sample,

0 5 10 15 20 25 30 35
Hallucination Rate (%)
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Mistral
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Figure 2: Observed hallucination rates of the tested models.

for a total of 1,152,000 package prompts across all tests. To
measure LLMs’ propensity to produce hallucinated packages
during code generation, we use the package hallucination
rate metric, which can be expressed as a simple ratio of the
number of hallucinated packages to the total number of rec-
ommended packages. The total hallucination rates for each
evaluated model are presented in Figure 2. More fine-grained
results on hallucination rates for all models tested, covering
both Python and JavaScript, are presented in Appendix E.

These 30 tests generated a total of 2.23 million packages
in response to our prompts, of which 440,445 (19.7%) were
determined to be hallucinations, including 205,474 unique
non-existent packages (i.e. packages that do not exist in PyPI
or npm repositories and were distinct entries in the halluci-
nation count, irrespective of their multiple occurrences). Our
results for GPT-3.5 (5.76%) and GPT-4 (4.05%) differ signif-
icantly from previous work on package hallucinations [30],
which found hallucination rates 4−6 times higher (24.2% and
22.2%, respectively) for those specific models. GPT series
models were found to be 4 times less likely to generate hal-
lucinated packages compared to open-source models, with a
hallucination rate of 5.2% compared to 21.7%. GPT-4 Turbo
resulted in the lowest overall hallucination rate at 3.59%,
while DeepSeek 1B had the best hallucination rate among
open-source models at 13.63%. Python code resulted in fewer
hallucinations than JavaScript (15.8% on average compared to
21.3% for JavaScript). Despite the difference in hallucination
rate between the two languages, there is a linear relationship
between the results (as shown in Figure 14 in the appendix),
demonstrating that the propensity of a model to hallucinate is
positively correlated between programming languages. The
above results provide strong evidence that package hallucina-
tions are a pervasive issue across all code-generating LLMs.

RQ1 Summary: Package hallucinations were found to be
pervasive phenomenon across all 16 models tested. Com-
mercial models hallucinated 4× less compared to open-
source models. Python code resulted in a lower hallucina-
tion rate compared to JavaScript.



5.2 Impact of Model Settings (RQ2)

Effect of Temperature Settings. The temperature set-
ting in a LLM is used to adjust the randomness of the
generated responses, where a lower temperature results
in more predictable and deterministic outputs, while a
higher temperature increases creativity and diversity in
the responses (Appendix F.1). We varied this setting for
each model between the minimum and maximum allowed
values and observed the change in hallucination rate (the
maximum temperature for the GPT series models is limited
to 2, while the open-source models can be set to 5). All
models exhibited a clear increase in hallucination rate
as temperature value increases, with the effect becoming
severe at maximum values. The OpenAI models, as shown
in Figure 3, showed only a slight increase in hallucination
rate between temperatures 0 and 1, which then increased
sharply between 1 and 2. In particular, GPT-4 resulted in
a hallucination rate (8.9%) nearly 4 times lower than GPT
3.5 (31.8%) at its maximum temperature. At the highest
temperature values, open-source models start to generate
more hallucinated packages than valid packages. Most LLMs
operate at a default temperature in the range of 0.7 to 1,
however, our results indicate that a lower temperature value
can reduce package hallucinations, with the optimal value
varying per model. Lower temperature also yields more
deterministic responses, presenting a trade-off between
risk of hallucination and creativity. Therefore, selecting
the appropriate temperature value is not a straightforward
decision.
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Figure 3: Hallucination rate vs. temperature.

Effect of Decoding Strategies. Next, we adjusted several de-
coding parameters (top-p, top-k, and min-p values) to reduce
the chances of a low probability token being selected as a
potential package, with the intuition that lower probability
tokens correspond to higher probabilities of hallucination in
this context. The following is a summary of the parameters
and values we modified.

• Top-p (0.4, 0.6, 0.8): Tokens with probabilities adding
up to less than this number are discarded.

• Top-k (5, 10, 15): Select only the top-k most likely to-
kens.

• Min-p (0.1, 0.2, 0.3): Tokens with probability smaller
than (min-p * probability of most likely token) are dis-
carded.

We evaluated each listed value in isolation, followed by a com-
bined evaluation of the values highlighted in bold, resulting
in a total of 10 tests. Note that top-k and min-p were only
tested for DeepSeek and CodeLlama, as these values are not
modifiable through the OpenAI API. Varying the decoding
values induced a slight increase (1.16% on average) in the
hallucination rate for the four models across all values tested.
As we will expand on in RQ3, package hallucinations are
often persistently repeated across many iterations.

This suggests that greedy decoding strategies, which
prioritize the most probable tokens (i.e., the most proba-
ble token is always selected), would still generate fictitious
packages. This differs from other types of hallucinations,
which generally occur when low-probability tokens are sam-
pled. This persistent nature of package hallucinations high-
lights the inherent complexity of the problem.
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Figure 4: Hallucination rates of recent vs. all-time data sets.

Recency of Subject Matter. As described in Section 4.1, we
separated our coding prompts into two temporal datasets to
evaluate whether the hallucination rate was correlated with
topics/packages that emerged after the model was trained.
A lower difference between the rates of recent and all-time
prompts indicates better performance in handling questions
that fall outside the model’s pre-training data and therefore a
more generalizable model. The models we tested were shown
to be more likely to generate a package hallucination when
responding to prompts that deal with more recent topics. This
difference resulted in a 10% higher hallucination rate on aver-
age for older data versus more recent data.

Overall, all 16 Python models we evaluated demonstrated
a higher hallucination rate when being prompted about
questions or packages that were popular within the past
year (Figure 4). These higher rates are at least partially due to
the inherent limitations and training costs of modern LLMs.
As noted in the OpenAI GPT-4 technical report [1], LLMs
cannot update themselves with new information after release



and have no knowledge of the world beyond their training data
cutoff date. Although fine-tuning can enhance specific tasks,
it generally does not improve the model’s overall knowledge
of the world. The massive cost of training LLMs from scratch,
evidenced by the 1,400,000 GPU hours (220 years) required
to train the 12 CodeLlama models, makes continuously updat-
ing pre-training data impractically expensive [53]. This cost,
along with steadily increasing model sizes and training times,
poses a significant barrier to reducing package hallucinations
for advanced coding prompts and packages.

RQ2 Summary: Lower temperatures result in the lowest
hallucination rate while hallucination rates increase dra-
matically with temperature values larger than 1. Altering
decoding and sampling parameters in the model does not
improve hallucination rates. More recent prompting topics
lead to a 10% increase in hallucination rates.

5.3 Model Behaviors (RQ3)
Frequency of Repeated Hallucinations. To determine
whether hallucinations are random error or repeatable phe-
nomena, this test focuses on the persistence of hallucinations
within a model. We randomly sampled 500 prompts that gen-
erated package hallucinations during our initial testing and
then repeated those queries 10 times per prompt. Of those
10 queries, we recorded how many times the original hal-
lucinated package was regenerated. Our analysis reveals an
unexpected dichotomy when repeatedly querying a model
with the same prompt that generated a hallucination: 43% of
hallucinated packages were repeated in all 10 queries, while
39% did not repeat at all across the 10 queries. This is in-
dicated in Figure 5, which shows prominent spikes at zero
repetitions and at 10 repetitions, respectively, for all models.
In addition, 58% of the time, a hallucinated package is re-
peated more than once in 10 iterations, which shows that a
majority of hallucinations are not simply random errors,
but a repeatable phenomenon that persists across multiple
iterations. This is significant because a persistent hallucina-
tion is more valuable for malicious actors looking to exploit
this vulnerability and makes the hallucination attack vector a
more viable threat.
Verbose Models versus Conservative Models. LLMs oper-
ate with inherent randomness and uncertainty. This behavior
enables novel and creative output, a desired feature for many
NLP tasks but less welcome for code generation, which re-
quires a high degree of accuracy and must adhere to rigid
syntax. We define a verbose model as one that operates with
higher degree of uncertainty and randomness by generating a
greater number of distinct package names while a conservative
model generates a lesser number of distinct packages, gener-
ally using only the most popular and well-known packages.
To this end, we investigated whether verbose models corre-
spond to a higher rate of package hallucinations. Our results
(Figure 6) show a correlation between hallucination rate
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Figure 5: Frequency of an identical hallucinated package
name generated from the same prompt across 10 trials.

and number of unique packages that were recommended
during this experiment (i.e. a more verbose model was as-
sociated with a higher hallucination rate). In light of these
findings, it is reasonable to suggest that models generating
code should adopt a more conservative approach (i.e. limiting
package suggestions to a smaller list of well-known packages
rather than generating names with uncertainty). The mod-
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Figure 6: Unique packages vs. total hallucination rate.

els with the lowest hallucination rates in our study adhered
to a smaller subset of packages when generating code, and
these models (e.g., the GPT series) also scored the highest
on the EvalPlus [40] code quality benchmarks. This suggests
that improving code quality and reducing hallucinations can
potentially be achieved simultaneously without a trade-off.

LLMs’ Ability to Detect Hallucinations. We then evalu-
ated each model’s ability to identify hallucinations versus
valid packages, both from its own code generation outputs
and those generated by other models. To test this, we con-
ducted two binary classification tests: (i) each model’s abil-
ity to detect hallucinated packages from its own generated
code and (ii) each model’s ability to detect hallucinated pack-
ages from code generated by other models. The names of the
valid and hallucinated packages produced by each model were
randomly sampled, and each model was asked "Is [package
name] a valid Python package?" Identification accuracy was
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Figure 7: The ability of models to correctly identify valid vs.
hallucinated packages.

calculated as the ratio of correct identifications to the total
number of packages provided.

Figure 7 shows that 3 of the 4 models (GPT 4 Turbo, GPT
3.5, and DeepSeek) proved to be highly adept in detecting
their own hallucinations with detection accuracy above 75%.
Table 2 displays the recall and precision values for this test,
with similarly strong performance across the 3 proficient mod-
els. This phenomenon implies that each model’s specific error
patterns are detectable by the same mechanisms that gener-
ate them, suggesting an inherent self-regulatory capability.
The indication that these models have an implicit understand-
ing of their own generative patterns that could be leveraged
for self-improvement is an important finding for developing
mitigation strategies. CodeLlama displays unique and inter-

Table 2: Performance of hallucination detection tests.

Model Name Other Same

Precision Recall Precision Recall

GPT 4 Turbo 0.91 0.91 0.89 0.89
GPT 3.5 0.78 0.78 0.82 0.82
CodeLlama 0.72 0.66 0.66 0.60
DeepSeek 0.80 0.80 0.81 0.78

esting behavior during both tests, as it has an overwhelming
propensity to label most packages as valid, resulting in a lower
accuracy for hallucinated packages.

RQ3 Summary: Package hallucinations are often persis-
tently generated. Models that generate fewer packages when
prompted are correlated with a reduced hallucination rate.
Several models were able to detect their own hallucinations
with greater than 75% accuracy.

5.4 Characteristics of Hallucinations (RQ4)
Occurrence of the Same Package Hallucination Across
Different Models. To analyze the possibility that the same
hallucinated packages are generated across different models,
we measured how many models generated the same pack-
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Figure 8: Number of models in which each unique package
(valid & hallucinated) appeared, with the y-axis on a log scale.

age name given a confirmed package hallucination. Figure 8
shows a clear pattern in which a large majority (81%) of dis-
tinctly generated package names were generated by only
one model. In other words, the specific package names were
usually unique to a single model, where only the most com-
mon packages were generated by more than one model. The
two populations (valid and hallucinated packages) diverge
as the number of models increases, with the number of hal-
lucinated packages decreasing nearly exponentially and the
distribution of valid packages becoming more uniform. The
finding that valid packages are less dependent on the specific
model used for generation is attributable to their frequent ap-
pearance in training data and applicability to universal coding
problems, leading to their widespread use in a broad range of
prompts.

Combining the insights gained during the persistence analy-
sis (Figure 5) leads to a key observation. As previously shown,
hallucinations are often persistent (58% are repeated within
10 iterations) within the same model but are not often repeated
between models, as 81% of hallucinated packages are gener-
ated by only one model. This further reinforces the evidence
that while hallucinations are a common phenomenon across
various models, the exact nature of these hallucinations is
generally model specific. This behavior is particularly sur-
prising given that our testing includes multiple models from
the same family (i.e. 3 GPT models, 4 CodeLlama models,
and 3 DeepSeek models). These models presumably use the
same training data for each version, yet each model generates
unique hallucinations that are not found in other models.
Semantic Similarity Between Hallucinated and Popular
Valid Packages. In order to analyze the semantic similar-
ity between hallucinated and popular real/valid packages, we
measured the average Levenshtein distance of a package to its
nearest neighbor (i.e., the closest valid package). Levenshtein
distance is a measure of how many insertions, deletions, and
substitutions are required for two strings to match [31]. If
the distribution of Levenshtein distances is skewed heavily
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Figure 9: Levenshtein distance of hallucinated packages to
nearest valid package.

right, with a peak at or near 0, this would indicate that most
hallucinations are very similar to valid package names. In
that case, attackers could infer a hallucination target based on
more traditional package confusion methods (e.g., typosquat-
ting) rather than analyzing a large volume of model output
over time to detect persistent hallucinations that could be used
as vessels for malicious code. A higher distance reflects that
package hallucinations are more random in nature and diffi-
cult to predict, rather than the result of minor grammatical
errors.

The results of the Levenshtein distance test, as seen in Fig-
ure 9, suggest that most package hallucinations are not simple
off-by-one errors. An off-by-one error in our case refers to a
discrepancy between the hallucinated package and its nearest
match, involving a difference of 1 to 2 characters, including
numbers, letters, or punctuation marks. Our results show that
only 13.4% (10,263 of 76,489) have a Levenshtein distance
of 1 or 2. Another 37.9% (29,025 of 76,489) of packages
registered a score between 3 and 5, which would indicate two
words with a common root word or concept that still differ
significantly. In particular, 48.6% (37,207 of 76,489) of hallu-
cinations scored 6 or higher, with 20.2% (15,457 of 76,489)
of those scoring 10 or higher, indicating two strings that are
very different and likely do not share any common theme.

The presence of such a large proportion of high Leven-
shtein values suggests that the majority of hallucinations
are not merely trivial typographical errors but are sub-
stantively different from existing package names. The ob-
served results provide further evidence that the root cause of
hallucinations is likely to be more complex than minor string
manipulation, pointing to deeper issues in the model’s gen-
erative processes that govern the creation of package names.
The long right tail of the distribution in Figure 9 indicates
a wide variety of hallucinations spread over a broad range,
revealing a diversity in types of errors and reinforcing that the
generation of hallucinations is a complex issue not limited to
simple character substitutions, additions, and deletions.

Effect of Deleted Packages. To determine whether packages

Table 3: Confusion by programming language repository.

Programming Language
No. of

Cross-Language
Hallucinations

JavaScript (npm) 6,705
R (CRAN) 293
Rust (Cargo) 181
Ruby (Rubygems) 123
PHP (Packagist) 47
Swift/Objective C (Cocoapods) 10
.NET (Nuget) 9
Go (Go) 0
Java (Maven) 0

that existed before a model’s pre-training data cut-off date
(i.e., the final day of data included in the model’s training
set) but were subsequently removed contribute significantly
to package hallucinations, we conducted an analysis using
package download counts obtained via Google BigQuery [13].
We searched PyPI download counts from 2022 and earlier to
compile a list of packages that existed before 2023 but are no
longer available on PyPI. This list was then compared against
the master list (obtained from PyPI as of January 10, 2024) of
hallucinated packages across all models. We detected 12,871
packages that were available between 2020 and 2022 and have
since been removed from PyPI. Of these deleted packages,
only 133 (0.17%) were generated during our analysis, indicat-
ing that deleted packages are a negligible source of package
hallucinations. This finding contradicts our hypothesis, as
we expected a sizable percentage of hallucinated packages
due to the presence of deleted packages in the training data.

Effect of Language Confusion. Another behavior observed
during the main experiment is the tendency to confuse pro-
gramming languages while generating package output (i.e.
the model is asked to provide Python packages, but instead
provides JavaScript packages). To validate the potential exis-
tence of this behavior in code-generating LLMs, we obtained
master lists of packages (using libraries.io [58]) from the nine
most popular open-source repositories and compared our list
of hallucinated package names generated during Python test-
ing to the respective master lists of valid packages from other
programming languages. Any intersection between the two
lists indicates a cross-language hallucination. Overall, only
JavaScript is a significant source of cross-language hallu-
cinations, as 8.7% (6,705/76,489) of hallucinated Python
packages are valid JavaScript packages. All other lan-
guages contributed negligible hallucinations, combining for
only 0.8% (663 of 76,489) across eight other open-source
repositories, including R, Rust, Ruby, PHP, Swift and .NET
(see Table 3 for complete results).



RQ4 Summary: Most unique hallucinated package names
were generated by a single model and thus only appeared in
1 out of 16 tests. Most hallucinated package names were not
semantically similar to a valid Python package as measured
by the Levenshtein distance. Deleted packages were a negli-
gible source of package hallucinations, while JavaScript was
the only significant source of cross-language hallucinations.

6 Mitigation

Motivated by the finding of systemic package hallucination
in all the tested models, we next investigate techniques to mit-
igate the occurrence of such hallucinations (thus addressing
RQ5).

6.1 Mitigation Strategies

A straightforward approach to address package hallucinations
could be to cross-reference a master list of valid packages
with the model’s output, thereby eliminating any incorrect
package names. This type of filtering method is ineffective as
a defense strategy, as an attacker could immediately publish a
hallucinated package to the repository and be subsequently
included in the “allow” list. Although using a curated list of
“known good packages”, using some metric such as package
popularity, would be a more effective method, this is still con-
sidered a blunt and reactive approach that requires constant
verification and updating. We refer to these types of filtering
techniques as post-generation techniques, as they aim to filter
hallucinated content after it has been generated by the model.
In contrast, the techniques we introduce in this section are pre-
generation techniques which aim to prevent the model from
generating hallucinated content. These techniques proactively
reduce the likelihood of hallucinations at the source with less
overhead and maintenance while providing a more reliable
output.

Developing specialized mitigation strategies for code-
generating LLMs is an area that has not been extensively
investigated; therefore, we draw upon general hallucination
mitigation strategies designed for typical NLP tasks, which
can also be adapted for code generation. These strategies can
generally be grouped into two broad categories: prompt en-
gineering and model development [59]. Prompt engineering
includes methods such as Retrieval Augmented Generation
(RAG), self-refinement, and prompt tuning. RAG approaches
involve enriching the original prompt with additional infor-
mation gathered from an external source, such as the web or
a pre-determined database [32]. This augmentation can occur
at any stage − before, during or after response generation −
and can be iterative, improving over multiple cycles until the
response is verified to be accurate. Self-refinement strategies,
on the other hand, utilize the model itself to detect and refine
potential hallucinations.

The second main mitigation strategy involves improving
the underlying LLM model itself through improved decoding
strategies or supervised fine-tuning. Supervised fine-tuning
alters model parameters to improve performance on tasks
prone to hallucinations, using a labeled dataset for more pre-
cise training. Decoding strategies are also considered a viable
mitigation strategy from the literature, but based on our find-
ings from RQ2, we know that altering decoding parameters,
such as top-k, top-p, and min-p, do not result in a decreased
hallucination rate. We evaluate each of the three remaining
categories to determine their applicability to the code gener-
ation task and to our specific use case of reducing package
hallucinations during code generation.

6.2 Mitigation Implementation and Results
Retrieval Augmented Generation (RAG). We employ a
method of RAG which supplements the prompt with valid
package names before generation to assist the model in gener-
ating a response. We developed an additional dataset to serve
as the supplementary information by taking the top 20,000
most popular PyPI packages and prompting LlaMA-2 to gen-
erate a list of five questions that each package could help
answer given the description. After removing duplicate re-
sponses, this resulted in 65,000 statements in the form “Pack-
age [x] could answer questions about [y]”. These 65,000
statements were stored in a vector database, enabling efficient
retrieval of semantically similar statements. When a model
was asked to recommend packages given a code generation
prompt or Stack Overflow question, the vector database is
first queried from within the code to return the top 5 most se-
mantically similar statements. These statements are appended
to the prompt to give the model additional information con-
taining established valid packages to assist in generating non-
hallucinated responses.
Self-Refinement. Drawing on insights from our findings in
RQ3 (see Section 5.3), which revealed that LLMs often ex-
hibit proficiency in identifying their own package hallucina-
tions, we implemented a self-refinement method. Following
the generation of package names, the model is queried re-
garding the validity of these packages. If the model indicates
that the packages are invalid, the response is regenerated with
a specific instruction to not use the invalid package. This
regeneration process is allowed to iterate up to five times, ac-
knowledging that many package hallucinations are persistent,
as demonstrated in RQ3, and may be generated repeatedly. It
is possible during this test that a valid package is misclassi-
fied as a hallucination by the model, although because this
is an iterative process, the success rate should outweigh the
false positive rate over the course of testing, resulting in a net
decrease in hallucination rate.
Fine-tuning. For our next method, we fine-tuned the models
using the code/package list (Heuristic 1) and prompt/package
list (Heuristic 2) pairs that were generated during our initial



experiments (Section 5.1). All hallucinations were filtered
out and the models were re-trained using the remaining valid
responses (560,000 samples). As fine-tuning affects the under-
lying model weights, we also need to make sure the fine-tuned
model retains the ability to produce functional and effective
code, which we will test by comparing the code quality of the
original models and the fine-tuned ones using the well-known
HumanEval benchmark [6]. The HumalEval benchmark is a
set of pre-defined prompts and test cases, and the final score
is a percentage of problems for which the model generated
code is both syntactically correct and passes the test cases, re-
flecting the model’s ability to produce functional and accurate
code.

We implemented these mitigation techniques using the
DeepSeek Coder 6.7B and CodeLlama 7B models. These
models were selected because they represent two distinct
classes of foundational models, with these specific parameter
sizes reflecting diverse performance levels: DeepSeek being
among the best-performing, and CodeLlama among the worst-
performing during our initial experiments (see Section 5.1).
Both models were tested using each of the above methods
individually and then using all three methods in an ensemble
configuration.

Table 4: Performance of the mitigation techniques.

DeepSeek CodeLlama

Baseline (No Mitigations) 16.14% 26.28%
Retrieval Augmented Generation (RAG) 12.24% 13.40%
Self-Refinement 13.04% 25.51%
Fine-tuning 2.66% 10.27%
Ensemble 2.40% 9.32%

Results. Overall, all the mitigation strategies we implemented
resulted in a reduced rate of package hallucination, with RAG
and Supervised Fine-Tuning proving particularly effective
(see Table 4). Fine-tuning proved to significantly improve the
results, especially for the DeepSeek model, where halluci-
nations were reduced by 83%, achieving a total rate of just
2.66%, which is a lower rate than any of the ChatGPT models
(observed during RQ1). Self-refinement feedback was also
much more effective for the DeepSeek model (19% reduc-
tion) compared to the CodeLlama model (3% reduction). This
aligns with our results in RQ3, where the DeepSeek model
was proficient at detecting hallucinations, while the CodeL-
lama model had a strong bias towards labeling packages as
valid, which limited its ability to reliably detect errors. The en-
semble method of combining all mitigation strategies further
improved the results, reducing hallucination rates by 85% and
64% from their baseline levels for DeepSeek and CodeLlama,
respectively.

The code quality of the fine-tuned models, as measured
using the HumanEval benchmark tests, did decrease signifi-
cantly, -26.1% and -3.1% for DeepSeek and CodeLlama re-

spectively, in exchange for substantial improvements in pack-
age hallucination rate. Although code quality was negatively
affected, fine-tuned scores are still at levels comparable to
other high-performing models such as Mistral 7B (26.1%),
Llama 65B (23.1%), and Llama 2 7B (12.8%).

In summary, our results demonstrate that while all tested
mitigation strategies effectively reduce package hallucina-
tions, fine-tuning comes at the cost of diminished code qual-
ity. Further research is needed to develop fine-tuning methods
that minimize hallucinations without compromising quality.
In the meantime, RAG and self-refinement offer promising
alternatives.

Table 5: Analysis of code quality after fine-tuning.

DeepSeek CodeLlama

Original Model pass@1 51.4% 19.6%
Fine-tuned pass@1 25.3% 16.4%

7 Discussion and Conclusion

Since the writing of this paper, several more advanced mod-
els have emerged for code generation. These newer models
may offer improved performance and different hallucination
tendencies and characteristics, which we may have been un-
able to capture in our study. The study also includes fewer
commercial models due to funding constraints, meaning that
the findings may not fully represent the performance and
hallucination tendencies of the latest commercial LLMs.

In terms of future work, understanding the precise underly-
ing causes of package hallucinations is still an open question.
This includes exploring the architecture and components of
LLMs that can contribute to these errors, examining the ad-
equacy of tokenizers, and assessing how the composition of
the training data and pre-processing impact hallucination ten-
dencies. Identifying and mitigating these underlying issues
could lead to more robust and reliable code generation mod-
els. Future work could also focus on developing and testing
more sophisticated mitigation strategies tailored specifically
for code generation tasks. This could involve advanced tech-
niques in prompt engineering, the use of complex knowledge
graphs, the refinement of loss functions, and the exploration
of new fine-tuning methods. Integrating real-time feedback
mechanisms to dynamically adjust model output could fur-
ther reduce hallucination rates. Understanding how package
hallucinations are systemic and persistent at the token level
remains crucial.

In conclusion, we systematically studied package halluci-
nations in code-generating LLMs, including both commer-
cial and open-source models. Our comprehensive analysis
revealed that 19.7% of the generated packages are fictitious,
posing a critical threat to software security through package



confusion attacks. We identified key behavioral patterns and
characterized hallucinated packages, proposing effective miti-
gation strategies. Our findings underscore the importance of
addressing package hallucinations to enhance the reliability
and security of AI-assisted software development.

Ethics Considerations

We have disclosed our research to model providers including
OpenAI, Meta, DeepSeek, and Mistral AI. We received re-
sponses from all providers that our research will be taken into
consideration for future models.

Our research highlights the feasibility of a new attack vec-
tor that can be used to carry out package confusion attacks
by exploiting the package hallucinations generated by code-
generating LLMs. Hallucinations are a well-studied limitation
of generative AI models, including code-generating LLMs,
which even current state-of-the-art techniques cannot com-
pletely eliminate. Our goal in this research is to get a better
understanding of this phenomenon of package hallucinations
in code-generating LLMs. We hope that these findings can
help secure future models so that users are better protected
against package confusion threats enabled due to package
hallucinations.

One course of action that we chose not to pursue for ethical
reasons was publishing actual packages using hallucinated
package names to PyPI (with no actual code). There would
be scientific value in demonstrating the validity of exploiting
package hallucinations on an open-source repository, but we
felt that doing so would have been misleading, undermined
the integrity of the repository, wasted resources, and could be
interpreted as violating the terms of service.

Another consideration for making our data public is that
half of our prompt dataset was compiled using user created
data from StackOverflow. This data consisted of carefully
scraped questions and the only data obtained was the question
itself; we did not collect any user information or even the an-
swers to the question. This approach aligns with privacy best
practices and adheres to data minimization principles, which
dictate collecting only the data necessary for our research ob-
jectives. Furthermore, the process of scraping was designed
to comply with StackOverflow’s terms of service and data
use policies, ensuring that we maintained legal and ethical
integrity throughout the data collection phase. This careful
consideration in data handling not only safeguards user pri-
vacy but also reinforces the ethical standards we uphold in
making our dataset publicly available.

No human subjects were involved in our research and all
experiments were conducted in controlled settings with no
impact on external persons or entities.

Open Science

We are committed to the open science policy and will
make all source code, datasets, and generated code publicly
available. The only exception is we will not release our
master list of hallucinated package names or the detailed
results of our individual tests to the public. Such information
could be misused by malicious actors to execute a package
hallucination attack. The master list and full results from
each of the 30 tests presented in Section 5.1 will be shared
responsibly by request to verified researchers.

Specific items that will be made available:
1. All code and data necessary to recreate our primary ex-

periments to detect hallucinated packages.

• Given a model, a single script will generate all
code and packages then evaluate the output for
hallucinations and save the results.

• Both the LLM and Stack Overflow datasets.

• An environment.yml file that details the packages
and dependencies needed to run the code.

2. All code and data to reproduce each figure in the paper.
3. All code and data to reproduce the mitigation tests in the

paper.

• Two fine-tuned models trained on question/answer
responses containing valid package names.

• RAG database along with the code and data used
to create it.

• Code to run all 4 mitigation tests.

4. All data and code can be found at: https://zenodo.o
rg/records/14676377 or https://github.com/S
pracks/PackageHallucination.
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A Truncated List of LLM Generated Coding
Prompts

1) Generate Python code that implements a simple web
server that can handle GET and POST requests using the
http.server module.

2) Generate Python code that imports the AWS SDK for
Python and creates an Amazon S3 bucket, an Amazon
EC2 instance, and an Amazon RDS database, and sets up
user authentication using IAM roles.

3) Generate Python code that implements a simple flock-
based file locking mechanism using the ‘with’ syntax, al-
lowing multiple threads to safely access a shared resource
while ensuring exclusive access for writing operations.

4) Generate Python code that implements a backport of
f-strings to Python versions prior to 3.6 using the
‘str.format()’ method.

5) Generate Python code that imports the Selenium library
and uses it to automate interactions with a web application,
such as navigating to pages, filling out forms, and verifying
expected elements are present on the page.

6) Generate Python code that implements a rate limiter for
Flask applications using the ‘limiter’ library, which pro-
vides a simple way to add rate limiting to any Flask end-
point.

...

9810) Generate Python code that imports the PyGlove library
and uses it to manipulate various Python objects, such
as lists, dictionaries, and strings, by applying operations
like reversal, sorting, indexing, slicing, concatenation, and
membership testing.
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9811) Generate Python code that imports the necessary li-
braries and uses the Fuzzy Self-Tuning PSO algorithm to
perform global optimization for a given function.

9812) Generate Python code that imports the necessary li-
braries and sets up a configurable middleware pipeline for
making HTTP requests to the Microsoft Graph API using
the Core component of the Microsoft Graph Python SDK.

9813) Generate Python code that imports the necessary
CUDA libraries and creates a simple kernel that performs
a matrix multiplication using CUDA’s GPU acceleration.

9814) Generate Python code that imports the threading mod-
ule and uses it to create threads for monitoring and tracing
in an application, using the OpenCensus API to collect
metrics and trace data.

B System Messages and Prompts

Figures 10 to 12 below show the system messages and
prompts that are sent to each model to generate the code
samples and package lists.

System Message

You are a coding assistant that generates
[Python/JavaScript] code. Provide only the code
and add additional explanatory text only when abso-
lutely necessary. If no code is required to answer the
question, simply reply ‘None’.

Prompt

LLM Generated prompt from Appendix A or Stack Over-
flow question.

Figure 10: Code generation phase.

C Model Parameters and Testing Environment

Model testing was conducted in two distinct computing en-
vironments - a Debian environment with 40 nodes, each
equipped with 40 CPU cores, 1TB of RAM, and NVIDIA
A100 or V100 GPUs and a Ubuntu system with 80 CPU
cores, 750 GB of RAM, and 3 NVIDIA RTX 6000 GPUs.

Table 6 shows the model parameters used during our RQ1
tests.

D Python vs. JavaScript Hallucination

The linear relationship demonstrating a model’s propensity to
hallucinate across both Python and JavaScript (as described
in Section 5.1) is shown in Figure 14.

System Message

You are a coding assistant that determines
[Python/JavaScript] packages necessary to execute
code. Respond with only a list of [Python/JavaScript]
packages, separated by commas and no additional text
or formatting. If there is no code provided, respond
‘None’, otherwise the response must begin with the
name of a [Python/JavaScript] package.

Prompt

Python/JavaScript] packages are required to run this
code: [Code sample generated from code generation
phase].

Figure 11: Package generation phase - Heuristic 1.

System Message

You are a coding assistant that recommends
[Python/JavaScript] packages that would be help-
ful to solve given problems. Respond with only a list
of [Python/JavaScript] packages, separated by commas
and no additional text or formatting. The response must
begin with the name of a [Python/JavaScript] package.

Prompt

Which [Python/JavaScript] packages would be useful in
solving the following coding problem: [Original LLM
generated prompt or Stack Overflow question].

Figure 12: Package generation phase - Heuristic 2.

E Complete Results for Python and JavaScript

Table 7 and Table 8 shows complete results for package hal-
lucination experiments observed across all tested models for
Python and JavaScript.

F Additional Background Information

F.1 Hallucinations

Hallucinations can also be categorized based on whether they
can be directly verified from the source content; if so, it is
termed an intrinsic hallucination, otherwise, it is considered
an extrinsic hallucination [20]. The structured nature of code
leads to intrinsic hallucinations that are directly traceable
to syntactic errors, while extrinsic hallucinations arise from
complex interactions or gaps in the model’s training data
[39]. Code generation hallucinations manifest in several ways,



System Message

You are a coding assistant that assists users in cre-
ating simple prompts that will be used to generate
[Python/JavaScript] code. No code should be used in the
response.

Prompt

Your answer must begin with ‘Generate
[Python/JavaScript] code that’ and must not be
longer than one sentence. Do not include extra text
or formatting (i.e. do not start with ‘Sure! Here’s
a prompt...’). Write a prompt that would generate
[Python/JavaScript] code to accomplish the same
tasks as the following package description: [package
description from PyPI].

Figure 13: Coding prompt generation.

Table 6: An overview of the model parameters.

Parameter Value

Temperature (Code Generation) 0.7
Temperature (Package Prompts) 0.01
Top-p 0.9
Top-k 20
Repetition Penalty 1
Max tokens (Code Generation) 2048
Max tokens (Package Prompts) 64
Typical-p 1
Epsilon Cutoff 0
Eta Cutoff 0
Diversity Penalty 0

including functional bugs that impair the intended operation,
code that performs the wrong task, dead code that never gets
executed, and, perhaps most critically, security vulnerabilities
that can be exploited.

The persistent issue of hallucinations in LLMs has spurred
extensive research into various mitigation strategies for stan-
dard natural language generation tasks, broadly categorized
into prompt engineering and model architecture enhance-
ments [59]. Prompt engineering techniques such as Retrieval
Augmented Generation (RAG) [32] and self-refinement meth-
ods [44] aim to refine the input provided to the model to pro-
duce more accurate outputs. Alternatively, developing more
robust models involves approaches such as supervised fine-
tuning [57], inference time intervention [35], and incorporat-
ing knowledge graphs [21] to improve model understanding
and reduce errors/hallucinations in the model output.

The manipulation of the temperature parameter within each
model has also been shown to significantly influence the
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Figure 14: Python vs. JavaScript hallucination rates.

prevalence of hallucinations in LLM output [2]. The temper-
ature parameter modulates the probability distribution over
potential output tokens [46]. Lower temperatures produce less
random, more predictable outputs, while higher temperatures
increase the likelihood of sampling low-frequency tokens,
raising the risk of hallucinations [8].

G Packages and Modules Explanation

Here is a quick primer on the purpose of packages and
modules in coding languages and how that relates to the
topic of package hallucinations. To enable code modular-
ity and reusability, interpreted programming languages such
as Python and JavaScript allow for entities called modules.
A module is a chunk of code, often in an external file, that
performs a specific task or function. By encapsulating related
code into modules, developers can organize their programs
more efficiently and make them easier to maintain and share.
A package is a collection of related modules that work to-
gether to provide certain functionality. To use a particular
module in their source code, a developer must install the ap-
propriate package into its development environment by first
downloading the package from an online package manager or
repository such as PyPI or npm, if it is not locally available,
and then import the desired module into the code using appro-
priate import functions, e.g., import in Python or require
in JavaScript.

These module names do not necessarily need to match
the package names and the namespace for modules is not
protected, i.e., different packages may include modules of the
same name. This discrepancy poses a significant challenge
for detecting package dependencies from the raw Python and
JavaScript code, as the import/require statements that are
typically included in code samples for importing modules do
not have a unique mapping to package names. Thus, it would
not be accurate to simply parse the generated code for import
or require statements, as those statements refer to module
names and not package names.



Table 7: Hallucination Percentages for all models tested using Python code.

Model Total Hallucination LLM Generated Prompts Stack Overflow Prompts “pip install"

GPT-4 Turbo 3.59%
(2,739/76,313)

3.29%
(1,518/46,204)

4.07%
(1,169/28,728)

3.77%
(52/1,381)

GPT-4 4.05%
(2,969/73,396)

3.83%
(1,741/45,403)

4.45%
(1,046/23,487)

4.04%
182/4,506

GPT-3.5 Turbo 5.76%
(4,387/76,123)

5.98%
(2,495/41,7)

5.50%
(1,868/33,948)

5.63%
(24/426)

DeepSeek 1B 13.63%
(12,481/91,543)

11.07%
(5,847/52,806)

16.39%
(5,901/36,007)

26.85%
(733/2,730)

DeepSeek 33B 16.53%
(7,071/42,788)

13.85%
(3,623/26,167)

25.47%
(3,033/11,906)

8.80%
(415/4,715)

WizardCoder 33B 14.31%
(4,909/34,300)

9.79%
(1,579/16,125)

21.40%
(2,8523/13,329)

9.84%
(477/4,846)

DeepSeek 6B 16.61%
(16,526/99,505)

14.01%
(9,240/65,957)

23.56%
(6,792/28,828)

10.47%
(494/4,720)

OpenChat 7B 18.31%
(16,932/92,452)

17.39%
(9,582/55,092)

19.98%
(6,454/32,307)

17.73%
(896/5,053)

CodeLlama 13B 18.03%
(12,404/68,809)

15.21%
(6,450/42,410)

22.76%
(5,752/25,273)

17.94%
(202/1,126)

Mixtral 8x7B 16.79%
(7,753/46,166)

13.12%
(2,749/20,951)

20.92%
(4,068/19,949)

16.23%
(936/5,766)

MagiCoder 7B 16.60%
(20,258/122,057)

15.76%
(11,994/76,096)

18.48%
(7,621/41,248)

13.64%
(643/4,713)

CodeLlama 34B 21.15%
(24,905/117,777)

15.22%
(9,495/62,366)

28.56%
(14,891/52,135)

15.84%
(519/3,276)

Mistral 7B 20.71%
(7,959/38,437)

14.47%
(2,808/19,412)

30.69%
(3,922/12,778)

19.67%
(1,229/6,247)

WizardCoder 7B - Python 20.69%
(11,408/55,131)

16.80%
(4,698/27,962)

26.73%
(6,112/22,867)

13.90%
(598/4,302)

CodeLlama 34B - Python 20.97%
(12,128/57,833)

19.01%
(5,913/31,112)

23.39%
(6,208/26,540)

3.87%
(7/181)

CodeLlama 7B 26.12%
(27,814/106,487)

21.51%
(12,961/60,261)

32.53%
(14,671/45,099)

16.15%
(182/1,127)

Table 8: Hallucination percentages for all models tested using JavaScript code.

Model Total Hallucination LLM Generated Prompts Stack Overflow Prompts “npm install”

GPT-4 Turbo 4.00%
(2,101/52,484)

2.57%
(735/28,545)

5.58%
(1283/23,009)

8.92%
(83/930)

GPT-4 5.29%
(2,911/55,021)

3.78%
(1,116/29,534)

3.86%
(1,672/23,416)

5.94%
123/2,071

GPT-3.5 Turbo 8.65%
(4,576/52,890)

6.92%
(1,930/27,909)

10.46%
(2,579/24,662)

21.00%
(67/319)

DeepSeek 1B 27.45%
(29,305/106,755)

23.96%
(14,300/59,681)

31.87%
(14,975/46,988)

34.88%
(30/86)

DeepSeek 33B 17.12%
(10,505/61,373)

13.28%
(5,472/41,209)

25.65%
(4,940/19,260)

10.29%
(93/904)

WizardCoder 33B 14.93%
(3,876/25,969)

7.83%
(1,038/13,256)

23.31%
(2,772/11,894)

8.06%
(66/819)

DeepSeek 6B 24.06%
(25,178/104,628)

17.36%
(9,595/55,255)

31.82%
(15,493/48,693)

13.24%
(90/680)

OpenChat 7B 23.04%
(24,863/107,903)

18.34%
(10,275/56,039)

28.18%
(14,557/51,657)

14.98%
(31/207)

CodeLlama 13B 28.62%
(11,984/41,866)

19.10%
(3,774/19,757)

37.15%
(8,200/22,071)

26.32%
(10/38)

Mixtral 8x7B 21.22%
(9,429/44,435)

14.83%
(2,882/19,436)

27.98%
(6,257/22,362)

11.00%
(290/2,637)

MagiCoder 7B 29.85%
(40,085/134,276)

26.27%
(20,703/78817)

35.10%
(19,301/54,982)

16.98%
(81/477)

CodeLlama 34B 34.57%
(38,607/111,668)

25.18%
(13,090/51,995)

42.77%
(25,489/59,590)

33.73%
(28/83)

Mistral 7B 24.79%
(10,505/42,381)

20.60%
(4,961/24,083)

34.59%
(5,252/15,183)

9.37%
(292/3,115)

CodeLlama 7B 35.71%
(33,877/94,876)

27.32%
(12,103/44,298)

43.07%
(21,751/50,507)

32.39%
(23/71)
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