
Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor
Hosein Yavarzadeh
UC San Diego, USA

Archit Agarwal
UC San Diego, USA

Max Christman
UNC Chapel Hill, USA

Christina Garman
Purdue University, USA

Daniel Genkin
Georgia Tech, USA

Andrew Kwong
UNC Chapel Hill, USA

Daniel Moghimi
Google, USA

Deian Stefan
UC San Diego, USA

Kazem Taram
Purdue University, USA

Dean Tullsen
UC San Diego, USA

Abstract
This paper introduces novel attack primitives that enable 
adversaries to leak (read) and manipulate (write) the path his-
tory register (PHR) and the prediction history tables (PHTs) 
of the conditional branch predictor in high-performance 
CPUs. These primitives enable two new classes of attacks: 
first, it can recover the entire control flow history of a victim 
program by exploiting read primitives, as demonstrated by 
a practical secret-image recovery based on capturing the 
entire control flow of libjpeg routines. Second, it can launch 
extremely high-resolution transient attacks by exploiting 
write primitives. We demonstrate this with a key recovery 
attack against AES based on extracting intermediate values.
ACM Reference Format:
Hosein Yavarzadeh, Archit Agarwal, Max Christman, Christina 
Garman, Daniel Genkin, Andrew Kwong, Daniel Moghimi, Deian 
Stefan, Kazem Taram, and Dean Tullsen. 2024. Pathfinder: High-
Resolution Control-Flow Attacks Exploiting the Conditional Branch 
Predictor. In 29th ACM International Conference on Architectural 
Support for Programming Languages and Operating Systems, Volume 
3 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New 
York, NY, USA, 15 pages. https://doi.org/10.1145/3620666.3651382

1 Introduction
Microarchitectural side-channel attacks exploit processor 
architectural state to leak information from one process or 
protection domain to another, when there should be no com-
munication between them. Side-channel attacks can be used 
standalone to leak information, but are also often critical

This work is licensed under a Creative Commons Attribution-NoDerivs 
International 4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04
https://doi.org/10.1145/3620666.3651382

building blocks for more sophisticated attacks. For example,
Spectre attacks [18, 21, 35, 75] use side channels both to trig-
ger a controlled misspeculation and to transfer data back to
the attacker via transient microarchitectural state. Microar-
chitectural attacks can exploit various shared units within
the processor such as caches [16, 31, 39, 70], branch predic-
tors [23, 26], and address translation buffers [29, 30, 66].
While there have been several control-flow based side

channel attacks on the branch predictor [17, 23, 26, 35], they
are hampered by limited knowledge of the associated ad-
dressing techniques. In particular, attacks targeting the con-
ditional branch predictor (CBP) [26] exclusively target the
simplest structure in the predictor, which only enables ex-
tracting or injecting coarse control-flow information.

1.1 Our Contributions
In this work, we demonstrate a new class of control flow
attacks which exploit detailed knowledge of every aspect
of modern CBPs. We show that due to recent research that
fully exposed the internal structure of modern Intel branch
predictors [71], prior limitations no longer exist, making
conditional branch predictors a powerful and dangerous
medium for attack. We create primitives that make it as
easy (from a programmer’s perspective) to read from and
write to the tables of the conditional branch predictor, or the
path history register (PHR, a precise record of the last taken
branches), as it is to read and write memory.
No prior work has used the PHR as an attack vector. We

show that the ability to read and write the PHR precisely is a
particularly powerful primitive that enables two new attack
capabilities.

(1) Full Control-Flow Recovery. Reading the path his-
tory register (PHR) provides several advantages over previ-
ous side-channel attacks exploiting branch predictors and
caches, as it records the complete control flow history of
recent branches including branch addresses and precise or-
dering. We can target each individual execution of a branch

770

https://doi.org/10.1145/3620666.3651382
https://doi.org/10.1145/3620666.3651382
https://creativecommons.org/licenses/by-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651382&domain=pdf&date_stamp=2024-04-27


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yavarzadeh et al.

that is executed many times, where prior CBP attacks could
only influence the first few, or capture the bias of the last
few instances. In comparison, attacks targeting the instruc-
tion cache [10, 11, 15] to recover control flow history can
only capture the existence or absence of one outcome and
require wide instruction divergence that spans distinct cache
lines. Similarly, data cache attacks can only capture control-
dependent data accesses that access divergent cache lines.
In contrast, we can detect the outcome of every instance
of each branch directly, regardless of the cache footprint of
the executed code or even whether any memory data was
touched.
In this paper, we describe the key primitives that allow

us to read and write the PHR, and to read and write the
prediction history tables (PHTs) of the CBP. We further de-
scribe more advanced techniques. The first of those allows
us to go beyond just the recovered PHR and capture control
flow history of nearly unlimited length, allowing us to track
extremely large swaths of branch history. Previous attacks
that can precisely track the entire program’s control flow
require elevated privilege (i.e., root access), which makes
them practical against the specific threat model of untrusted
OS (e.g., against Intel SGX [45, 51, 64, 69]), but not valid for
other threat models.

Finally, we also describe a tool that transforms the PHR (a
series of heavily folded bits of branch address and target his-
tory) into a (nearly always) unambiguous control flow graph
(CFG) which includes the full history (series of taken/not
taken decisions) of every branch. This can be done both for
the physical PHR (194 taken branches and all intervening
not-taken branches), but also for our extended path history.
This research is distinct from prior work focused on the

PHT state. It demonstrates that the PHR is vulnerable to
leakage, reveals data unavailable through the PHTs (ordered
outcomes of repeated branches, global ordering of all branch
outcomes), exposes a far greater set of branching code as
potential attack surfaces, and cannot be mitigated (cleared,
obfuscated) using techniques proposed for the PHTs.

(2) High-Resolution Spectre Attack. Beyond just captur-
ing a complete control flow history, writing to the PHR gives
us the ability to launch extremely high resolution poison-
ing (e.g., Spectre) attacks. Prior Spectre-style attacks [26, 35]
typically only influence the first instance (or the first few, all
in the same direction) of a branch at a given address, such as
boundary checking ‘if’ statements. However, as mentioned,
with complete control over the PHR and the PHTs, we can
now influence an arbitrary instance of a branch executed
many times, inducing sophisticated patterns of branch mis-
predictions, for example, at specific iterations of a ‘for’ loop.
For example, we can cause an iterative encryption or decryp-
tion algorithm to complete and return after any number of
iterations (both more and less than intended). This allows us,

for example, to observe the results of every incremental step
in the algorithm, which in many cases also reveals the key.
We demonstrate the implications of these attack primi-

tives with two case studies. We demonstrate a speculative
execution attack against AES that returns intermediate val-
ues at multiple steps to recover the AES key, which requires
both the reading and writing primitives. We also steal secret
images by capturing the complete control flow (up to tens
of thousands of branches) of libjpeg routines. Finally, we
demonstrate that our attack primitives, and thus also the
attacks built upon them, work across virtually all protection
boundaries and in the presence of all recent control-flow
mitigations from Intel.

Outline. Section 2 provides background. Section 3 delves
into the threat model. Section 4 introduces novel attack prim-
itives that allow adversaries to leak and poison the PHR and
PHTs of the conditional branch predictor. Section 5 extends
the Read PHR attack to capture control flow history of prac-
tically unlimited length. Section 6 introduces Pathfinder, a
tool that reconstructs the control flow graph of the victim
program and identifies the execution path leading to the
observed PHR value, thereby unveiling the complete con-
trol flow history. Section 7 discusses the attack surface. Sec-
tion 8 demonstrate the real-world applicability of our attacks
by successfully recovering a secret image enabled by cap-
turing the entire control flow of libjpeg routines. Section 9
demonstrates successfully key recovery attack against AES
in widely used cryptography libraries, like the Intel-IPP [6].
Section 10 discusses potential countermeasures. Section 11
reviews related work and Section 12 concludes the paper.

1.2 Disclosure
We communicated the security findings outlined in the pa-
per to both Intel and AMD in November 2023. Intel has
informed other affected hardware/software vendors about
the issues. AMD plans to address the concerns raised in the
paper through a Security Bulletin, AMD-SB-7016.

2 Background
This section provides relevant information about the branch
prediction units (BPUs) inside modern processors. In particu-
lar, we focus on conditional branch predictors (CBPs) which
provide a prediction as to whether each conditional branch
will be taken or not. We summarize recent findings about
CBPs [26, 71] and verify that those finding are still valid for
more recent Intel processors (Raptor Lake) that were not
examined by previous studies.

2.1 Branch Prediction
High-performance processors rely heavily on branch predic-
tion to optimize pipeline utilization. In general, the branch
prediction unit (BPU) is responsible for making three critical

771



Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Target Predictors
Path History Register (PHR) ⨁

T/NT

Predicted 
Target

Conditional Branch Predictor (CBP)

Indirect Branch Predictor (IBP)

Return Address Stack (RAS)

Branch Target Buffer (BTB)

Next PC

Br. type

Branch Address (PC)

⨁

… …

Branch Addr. Target Addr.

footprint ⨁

Direction Predictor
Taken Branch

Figure 1. Branch Prediction Unit (BPU) in Modern CPUs.

predictions: identifying branches, predicting their destina-
tion addresses, and outcomes (taken or not). In order to
make these predictions, the BPU features multiple compo-
nents. These components consist of the branch target buffer
(BTB) and the indirect branch predictor (IBP) for identifying
branches and their targets, along with the conditional branch
predictor (CBP) for predicting their outcomes. Figure 1 pro-
vides an overview of the BPU in modern processors, drawing
from previous studies [17, 26, 28, 35, 40, 44, 62, 71].

2.2 Conditional Branch Prediction (CBP)
The conditional branch predictor, also referred to as a direc-
tional branch predictor, is responsible for predicting whether
the branch instruction will be taken or not. The CBPs dis-
cussed in the literature are typically history-based [34, 42,
56, 59, 72], meaning they make predictions about branch
outcome by analyzing previous outcomes. These predictors
can be further categorized based on the type of history they
keep track of, which includes local and global history. Local
history records past outcomes specific to the same branch,
whereas global historymonitors the outcomes of all branches
executed by the processor. A simple local predictor uses a
table of saturating counters, simply indexed by the branch
address [36, 42, 72]. A high saturating counter value predicts
a branch to be taken, a low value predicts not taken, and
the counter is adjusted upon branch resolution. In contrast,
global predictors maintain a history of past branches in a
global history register (GHR) and use this history to access
branch prediction tables [24, 49, 73].
State-of-the-art branch predictors use a combination of

local and global predictors [43, 52–56]. For instance, the
TAgged GEometric history length predictor (TAGE) uses ge-
ometricly increasing history lengths for table look-ups [56].
TAGE has a track record of success in branch predictor cham-
pionships [3–5] and is found in commercial high-performance
processors [33, 71, 77]. TAGE consists of a base predictor,
which is indexed by the branch address, and multiple tagged
tables that are indexed by hash functions of the branch ad-
dress and different history lengths. Each entry in the tagged
tables includes a saturating counter, a tag value for history
association, and a usefulness counter for replacement policy.

BranchScope. Evtyushkin et al. [26] show that in mod-
ern Intel processors (Specifically Sandy Bridge, Haswell, and
Skylake architectures), the CBP is made of a local predictor

B12B13 B5B6B7B8B9B10
B0

 

T2
⨁

B1
 

T3
⨁

B2
 

T4
⨁

B11
 

T5
⨁B14B15

“doublet 0”
B3

 

T0
⨁

B4
 

T1
⨁

T0: bit #0 in target addressB3: bit #3 in branch address ⨁: XOR “doublet 1”

Figure 2. Branch footprint Used in Updating the PHR.

which is indexed by the branch address, and a more com-
plicated global predictor that uses global history to make
predictions. BranchScope initiates hundreds of thousands
of random branches to force the CBP to prioritize the local
predictor over the global one. It then generates collisions
within the local predictor by aliasing branch addresses, influ-
encing and potentially leaking local predictor entry values.
However, BranchScope falls short of providing a compre-
hensive analysis of the global predictor, and how it could be
exploited in side-channel attacks.

Half&Half. More recently, Yavarzadeh et al. [71] present
a comprehensive reverse engineering analysis of the CBP
in Intel processors spanning from Ivy Bridge to Alder Lake.
That work sheds light on the intricate workings of the global
predictor and proposes a software-based mitigation strat-
egy that effectively partitions CBP structures and prevents
leakage between two domains using the shared predictor. As
our attacks rely on the inner workings of the CBP, the fol-
lowing subsections provide a more detailed background on
the structures used in Intel CBPs. We present a summary of
previous findings, but also confirm and extend those results
on newer Intel microarchitectures, in particular the latest
Intel microarchitecture, Raptor Lake.

2.2.1 Path History Register (PHR). The global history
in Intel CBPs, referred to as a path history register (PHR),
records the history of the last 194 taken branches in Alder
Lake (93 in Skylake), whether they are conditional or uncon-
ditional. Branches that are not taken do not affect the PHR.
Also, 16 bits from the branch address (bits 15 to 0) and 6 bits
from the target address (bits 5 to 0) form a 16 bit number
called branch footprint (depicted in Figure 2), which is used
in the PHR’s update process. The PHR undergoes a two-step
update process upon a branch being taken: first, a leftward
shift of two bits, followed by XORing the 16-bit footprint
into the PHR. This can be expressed as follows:

𝑃𝐻𝑅𝑛𝑒𝑤 = (𝑃𝐻𝑅𝑜𝑙𝑑 << 2𝑏𝑖𝑡𝑠) ⊕ 𝑓 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡

From the PHR update policy, we can conclude that the PHR
functions as a 194 ∗ 2 bits shift-register, with the even and
odd bits operating independently as the PHR shifts two bits
to the left per taken branch. To simplify the PHR calculations
and representation, we introduce a new notation known as
the doublet. A doublet is a 2-bit value, and within the PHR,
it represents pairs of adjacent bits. For instance, in Figure 2,
bit 0 and 1 form doublet 0, bit 2 and 3 constitute doublet 1,
and so on. With this representation, the PHR functions as a
194-doublet shift register; therefore, when a branch is taken,

772



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yavarzadeh et al.

Table1Table0

PC[5]

Tag?

index tag

Mux

Sat. Counter

PC

PHR[33:0] PC

Table2

PC[5]

Tag?

index tag

Mux

PHR[65:0] PC

Table3

PC[5]

Tag?

index tag

Mux

PHR[193:0] PC

Prediction (T/NT)

4 Ways 

512 Sets

TagSat.
Counter

Figure 3. Structure of the CBP in Intel CPUs.

it shifts one doublet to the left, and its 8 lower doublets are
XORed with the footprint, which also consists of 8 doublets.

Observation 1. The PHR structure in Raptor Lake ar-
chitecture is identical to that of Alder Lake.

2.2.2 Pattern History Tables (PHTs). Half&Half reveals
the presence of three prediction tables within the CBP, with
each table being 4-way set associative indexed by a 9-bit
function, composed of eight bits from folded global history
(PHR) and a single bit from the PC (PC[5] or PC[4] depend-
ing on the architecture). Additionally, they identify a base
predictor that works in conjunction with the PHTs and is
indexed using the lower 13 bits of the PC. We validate their
findings on Raptor Lake’s CBP, as well.

Figure 3 offers an overview of the CBP in use within mod-
ern Intel microarchitectures. Similar to the TAGE predictor,
the reconstructed CBP model comprises a base predictor
(Table 0) indexed solely by the branch address, serving as
a local base predictor alongside three tagged components
(Table 1-3) indexed and tagged using the PC and increasing
lengths of the PHR: Table 1 uses the 34 lower doublets of
the PHR, Table 2 utilizes the 66 lower doublets, and Table
3 leverages the full-length PHR. Each entry in the tagged
tables comprises a saturating counter and a tag value for
history association that is formed through a combination of
PHR and PC.
While previous work [71] did not identify the size of the

saturating counters in the PHT entries and the base predic-
tor, we find that information to be important for our attacks.
In order to find the bit-width of the saturating counters, we
study the misprediction rate of a conditional branch which
has a repetitive pattern of directions (e.g. “𝑇 ...𝑇𝑁 ...𝑁 ” where
the number of ‘T’s and ‘N’s are equal to m), and its PHR is
fixed to all zeros. We increase m and measure the mispre-
diction rate. The point at which the number of mispredicted
branches remains constant after that indicates the bit-width
of the saturating counter: 𝑛 = log2 (𝑚 + 1).

Observation 2. We confirm that 3-bit saturating coun-
ters are used in the branch predictor [40].

Machine machine 1 machine 2 machine 3

Model Name Core i9-13900KS Core i9-12900 Core i7-6770HQ
𝜇𝐴𝑟𝑐ℎ. Raptor Lake Alder Lake Skylake

Table 1. Specifications of the Target Processors.

3 Assumptions and Threat Model
The primary focus of this paper is on vulnerabilities arising
from the conditional branch prediction unit employed in
recent Intel processors. We assume that the victim and the
attacker belong to separate security domains but are part of
either the same or different processes running on the same
physical core – either as co-resident SMT threads, or time-
sliced execution flows. In all the attacks that we show in
this paper, we assume that the attacker has the ability to
invoke the victim code multiple times, e.g., through a sys-
tem call or a function call. Additionally, we assume that the
branches within the victim program behave deterministi-
cally with regards to the inputs. In other words, with the
same set of inputs the outcome of the victim branches re-
main constant across different calls. Moreover, we assume
the attacker has access to the binary (the addresses of the
branches) of the victim function. While this paper specifi-
cally explores a subset of processors outlined in Table 1, the
generalizability of the reverse engineering efforts [26, 71]
extends our attack methodology to a broader range of In-
tel microarchitectures, encompassing all of Intel’s flagship
processors since Ivy Bridge (2012), spanning over a decade.

4 Attack Primitives
We conceptualize the branch predictor as a read/write scratch-
pad. A read operation occurs when a branch instruction re-
ceives a prediction from the branch predictor. On the other
hand, when a branch instruction resolves in the pipeline,
typically during the execution stage, it updates the PHTs
and/or PHR, resembling a write operation. As discussed in
Section 2, the PHR, along with the branch address, is used
to index the PHTs for reads (branch predictions) and writes
(branch outcomes). Not only do these tables persist across
protection boundaries, but so does the PHR itself. By reading
the PHR or PHT entry values following a victim program,
one can perform a leakage attack. Additionally, writing the
PHTs and/or PHR values before calling the victim can enable
new Spectre attacks.
However, due to the intricate nature of these structures

and their indexing functions, performing reads and writes is
significantly more complex than standard memory accesses,
making themmore challenging. To address this, we build our
attacks from a few carefully-crafted primitives that greatly
simplify the process of exploiting the PHR, PHT, or both.
This section introduces these attack primitives. We introduce

773



Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

fundamental techniques for manipulating the PHR and then
build more complex attack primitives on top of them.

Shift PHR. During the PHR update, the first step involves
shifting it one doublet to the left. In the second step, the lower
8 doublets of the PHR are XORed with the footprint, and if
the footprint is all zeros, no change occurs. Therefore, the
PHR undergoes only a leftward shift of one doublet. A zero
footprint is achieved by constructing a branch where the 16
lower bits of the branch address are zero, as are the 6 lower
bits of the target address. Using this, we develop a macro
called Shift_PHR[i] which has ‘i’ taken branches with
zero footprint, resulting in the PHR shifted by ‘i’ doublets
to the left. This can be expressed as follows:

𝑃𝐻𝑅𝑛𝑒𝑤 = 𝑃𝐻𝑅𝑜𝑙𝑑 << 𝑖

Clear PHR. We know that the PHR has a limited size of 194
doublets, and shifting the PHR value 194 times will result in
resetting it to an all-zero state. This operation is represented
by Clear_PHR, effectively equivalent to Shift_PHR[194].

4.1 Write PHR
Given our knowledge of how the branch footprint is gener-
ated from the branch and target address bits, we can create
a more sophisticated mechanism that allows the attacker
to set the PHR to any desired value. Consider a scenario
where we initially reset the PHR value using the Clear_PHR
macro. We introduce a taken branch instruction with zeroed
branch and target addresses, except for T0 and T1 (bits 0
and 1 in the target address). By controlling these bits, we
can adjust doublet 0 to any desired value, encompassing all
four possible options, as it’s a 2-bit value. Using this, we
develop the Write_PHR(𝑃193, 𝑃192, 𝑃191, ..., 𝑃0) macro, which
takes the desired PHR value as input and, upon execution,
sets the PHR value to the specified input value using 194
branches, similar to the one introduced earlier. Each branch
assigns the corresponding 𝑃𝑖 value in the PHR, where ‘i’
ranges from 193 down to 0.

4.2 Read PHR
Reading the PHR can be extremely powerful, because it re-
veals not just branch outcomes, but also the branch locations
and the path that led to each branch. We devise a mechanism
for reading the PHR value of a victim program one doublet at
a time. In this design, we make an assumption that a victim
function with an identical set of inputs that are fixed, but
not explicitly known, will exhibit the same behavior (i.e., the
same control flow execution) and yield the same consistent
expected output.

The key idea here is to create two distinct paths that lead
to a test branch. One path involves calling the victim function,
which sets 𝑃𝐻𝑅0, while the other path directly sets 𝑃𝐻𝑅1.
By comparing 𝑃𝐻𝑅0 and 𝑃𝐻𝑅1, we can identify the point at

k = rand()

k==0k==1

Write_PHR(X0…0)

call victim()

Shift_PHR(193)

Clear_PHR()

P0P1…P193PH
R

0…0P0PH
R0…0XPH
R

train branch: jeq (k==0)

test branch: jeq (k==0)

(a) Read doublet 0: No correla-
tion captured iff 𝑋 == 𝑃0.

k = rand()

k==0k==1

Write_PHR(XP0…0)

call victim()

Shift_PHR(192)

Clear_PHR()

P0P1…P193PH
R

0…P0P1PH
RXPH
R

train branch: jeq (k==0)

test branch: jeq (k==0)

00…P0 0

P0 is known from 
previous step

(b) Read doublet 1 once 𝑃0 is
known through Figure 4a.

Figure 4. Reading PHR doublets.

which they become equal, effectively revealing the victim
function’s PHR value.

Read doublet 0. To read doublet 0 in the PHR, we start with
two correlated branches within a for loop. The first branch,
called the train branch, is conditionally based on a random
bit, making its direction unpredictable. The second branch,
known as the test branch, can be predicted if the branch
predictor captures its correlation with the train branch. This
prediction is possible due to the two distinct PHR states (or
two distinct paths) created by the train branch’s behavior,
one when it’s taken and the other when it’s not.
Consider the code snippet in Figure 4a as an example. In

this scenario, we want to determine the value of 𝑃0, which
represents the least significant doublet in the PHR gener-
ated by the victim() function call. The attacker begins by
executing the train branch, based on a randomly generated
value. When the train branch is taken (k==0), the attacker
calls the victim function following the Clear_PHR macro,
assuming that the PHR value after the victim() call would
be equivalent to [𝑃193, 𝑃192, 𝑃191, ..., 𝑃0]. Subsequently, the at-
tacker shifts the received PHR value 193 doublets to the
left using the Shift_PHR macro. This operation results in a
PHR with all zeros except for the most significant doublet,
which corresponds to the value we aim to recover (𝑃0). If the
branch is not-taken (k==1), the attacker does not invoke the
victim function. Instead, we set the PHR to a known value
using the Write_PHR macro, where all doublets are zeros
except for the most significant one, systematically testing
all four possible values (00, 01, 10, and 11). If the CBP fails
to effectively capture the correlation between the train and
test branches, resulting in a 50% misprediction rate for both
branches, it indicates that the PHR received from the taken
and non-taken paths are identical, i.e., 𝑋 == 𝑃0.
In summary, after testing all four possible X values (00,

01, 10, and 11), we find that in three cases, the misprediction
rate (specific to the test branch) is close to 0%, indicating
X is not equal to 𝑃0. However, in one specific case, the 50%
misprediction rate strongly suggests that X is indeed equal
to 𝑃0. Therfore, we successfully leak the value of doublet 0.

774



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yavarzadeh et al.

Read Doublet 1, and the rest. Once we’ve obtained the
least significant doublet of the PHR (𝑃0), we can extend the
same technique to capture 𝑃1 (as shown in Figure 4b). The
process remains similar: in the taken path, we shift the PHR
value after the victim() function call by 192 doublets, and in
the not-taken path, we set the PHR value to [𝑋, 𝑃0, 0, . . . , 0].
With 𝑃0 known from the previous step, we test all four possi-
ble options for X to determine 𝑃1. By repeating this process,
we can recover all doublets of the PHR following the execu-
tion of any victim program.

Evaluation. To evaluate the primitive’s effectiveness, we
initialized the PHR value to a predetermined state and read
it back, verifying that the retrieved value matched the ini-
tialized value. We repeated this process with 1000 randomly
generated PHR values, and the Read_PHRmacro successfully
retrieved the intended PHR values in all cases.

Attack Primitive 1. Read_PHR() retrieves the precise
PHR value, capturing the history of the last 194 taken
branches, following the execution of a victim program.

4.3 Write PHT
Given our ability to set the PHR to any desired value, we
can effectively access any entry in the PHTs or the base
predictor. As illustrated in Figure 3, each PHT is indexed by
a particular length of the PHR. This allows us to selectively
modify a specific entry in any of the three PHTs or the base
predictor. To manipulate the 3-bit saturating counter for
a specific entry, we execute a branch instruction with the
precise values of the PHR and PC eight times in a loop to
ensure that the counter becomes saturated, either to Taken
or Not-Taken, depending on our desired outcome.

Attack Primitive 2.Write_PHT(PC, PHR, value) sets
the PHT entry accessed by (PC, PHR) to the provided
value (taken or not).

4.4 Read PHT
To read the saturating counter value of a particular PHT en-
try, we use a ‘prime+test+probe’ mechanism, wherein during
the prime phase, the counter value is set to all zeros (indi-
cating a prediction of ‘Not-Taken’), by setting the PHR and
PC appropriately and executing not-taken branches. Subse-
quently, in the test phase, the victim code is executed, leading
to updates in the PHTs or the base predictor. In the probe
phase, we execute a taken branch with precisely the same
PHR and low PC bits multiple times while measuring how
many times it is mispredicted by the CBP (by measuring the
performance counters or the timing difference). This mis-
prediction count reveals information about the value in the
PHT entry. For instance, 4 mispredictions indicates the entry
remained in the strongly not-taken state, 2 mispredictions

0x40AC00: jeq
…P190P191P192P193PHR P1P8 P7 …

…P191P192P193P194PHR P1*P9 P8* …P7*

P0

0x50AC00: jeq

PHR

Read, Analyze, and Write PHR

Co
llid

ing
 B

ra
nc

he
s

…P191P192P193X P1*P9 P8* …P7*

Revert PHRLast Taken Branch:

Attacker Branch:

Victim Code:

Attacker Code:

Figure 5. Read doublet 194 of the PHR: The attacker branch
misprediction rate is 50% iff 𝑋 == 𝑃194.

indicates it moved two steps away, perhaps due to two taken
branch instances.

Attack Primitive 3. Read_PHT(PC, PHR) extracts the
counter value of the PHT entry indexed by (PC, PHR).

5 Extended Read PHR
One limitation of the Read PHR attack is that it only captures
the history of the most recent 194 taken branches. While
this provides a substantial amount of information, it may fall
short for targeted code with more than 194 taken branches.
This limitation is particularly significant in older Intel proces-
sors (e.g. Skylake) with a smaller PHR size of 93. To address
this challenge, we developed a primitive called Extended Read
PHR, which is not constrained by the PHR size and captures
the entire control flow history of a victim program. This
primitive leverages the fact that branches within the victim
code use the (constantly changing) PHR to access the PHTs,
which contain information about far more than the last 194
taken branches. In particular, we exploit the fact that if we
know the last 194 taken branches, but we don’t know the
last doublet (depends on the 195th branch) that was shifted
out of the PHR, we can exploit the fact that that doublet, plus
193 known branches, was used to predict the most recent
(also known outcome) branch – and recover the unknown
doublet.

Read doublet 194. Consider Figure 5, which provides a
code snippet of both the victim and the attacker code. For in-
stance, let’s focus on the last taken branch within the victim
code. After applying Read PHR, we obtain the observed PHR
value as [𝑃193, 𝑃192, . . . , 𝑃2, 𝑃1, 𝑃0]. By leveraging our knowl-
edge of the PHR update policy and the branch and target
addresses, we can effectively reverse the PHR update steps to
determine the PHR value prior to this branch instruction. We
can successfully restore all doublet values except for the most
significant doublet. Now, let’s consider a not-taken branch
on the attacker side with precisely the same lower bits of
the branch address. By setting the PHR value before this
branch to the value we obtained through reversing the PHR
update steps, while brute-forcing the four possible values
of the most significant doublet, we create a scenario where

775



Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0x00410ec0: endbr64
0x00410ec4: movsxd rcx, dword ptr [rdx + 0xf0]
0x00410ecb: mov r8, rdi
0x00410ece: lea rdi, [rdx + 0x10]
0x00410ed2: movdqu xmm0, xmmword ptr [r8]
0x00410ed7: pxor xmm0, xmmword ptr [rdx]
0x00410edb: cmp rcx, 1
0x00410edf: jbe 0x410f0e

0x00410ee1: mov rdx, rdi
0x00410ee4: mov eax, 1
0x00410ee9: nop dword ptr [rax]

BB 3

0x00410ef0: add rax, 1
0x00410ef4: add rdx, 0x10
0x00410ef8: aesenc xmm0, xmmword ptr [rdx - 0x10]
0x00410efe: cmp rax, rcx
0x00410f01: jne 0x410ef00x00410f03: sub rax, 1

0x00410f07: shl rax, 4
0x00410f0b: add rdi, rax

0x00410f0e: aesenclast xmm0, xmmword ptr [rdi]
0x00410f13: movups xmmword ptr [rsi], xmm0
0x00410f16: ret

9

Basic Block 1 (BB 1) BB 2

BB 4

BB 5

Entry Block:

Exit Block:

Figure 6. PHR Analysis Output for Looped Implementation
of AES ECB Encryption Using AES-NI (Listing 1).

the victim branch and the attacker branch alias with each
other in the PHTs. Since their branch addresses are identi-
cal, we can infer that they will collide in PHTs only if their
PHRs match. This collision or non-collision is reflected in the
misprediction rate for the attacker branch. A matching PHR
leads to a 50% misprediction rate, while different PHRs result
in a 0% misprediction rate. Thus, we can deduce the value
of the most significant doublet of the PHR (𝑃194), effectively
extending the Read PHR to retrieve one more doublet.
We further improve our method by incrementally recov-

ering one additional doublet at a time. This entails orches-
trating collisions between the conditional branches in the
victim and attacker code. Essentially, we leverage the pattern
history tables (PHTs) as a side channel to extract more PHR
doublets.

Evaluation. In an extensive series of tests encompassing
1000 cases with varying numbers of taken branches (rang-
ing from 194 to 1000), our experiments consistently demon-
strated that the Extended_Read_PHR primitive successfully
reads the entire control flow history. This holds true unless
there are more than 194 consecutive unconditional taken
branches, an occurrence we observed to be exceptionally rare
in real-world programs. Consecutive unconditional taken
branches pose a challenge since they do not interact with
PHTs at all, preventing the attacker from exploiting the PHTs
as a side-channel to infer the PHR values.

Attack Primitive 4. Extended_Read_PHR() retrieves
the PHR value after the execution of a victim program.
It is capable of capturing the entire control flow history
without being constrained by the size of the PHR.

6 Pathfinder
Capturing the PHR is distinct from capturing the runtime
control flow of a target program, as the PHR is a complex
combination of multiple addresses and target bits for each
taken branch. Consequently, we introduce the Pathfinder
tool, which, given a PHR outcome and an executable code

1 void looped(uint8_t *plaintext, uint8_t *ciphertext, AES_KEY *key)
2 {
3 __m128i state = _mm_loadu_si128((__m128i *)plaintext);
4 __m128i *rd_key = (__m128i *)key->rd_key;
5 state = _mm_xor_si128(state, *(rd_key++));
6 for (size_t i = 1; i < key->rounds; i++) {
7 state = _mm_aesenc_si128(state, *(rd_key++));
8 }
9 state = _mm_aesenclast_si128(state, *rd_key);
10 _mm_storeu_si128((__m128i *)ciphertext, state);
11 }

Listing 1. Pseudo Code for Looped Implementation of AES
ECB Encryption Using AES-NI.

(containing the victim function), constructs the runtime con-
trol flow graph of the victim function. Pathfinder uses the
angr binary analysis tool [58] and an algorithm to identify
all potential control flow paths matching the observed PHR
values. While it’s not guaranteed that there will always be a
single path leading to the specific PHR, our extensive analy-
sis has shown that ambiguous results are exceedingly rare
due to the PHR’s size and complex update function. It should
be noted that binary analysis tools, such as angr [58], have
certain limitations in reconstructing control-flow graphs. For
instance, they may miss edges for indirect branches (with
multiple targets) in complex binaries. However, in practice,
we have found this limitation to have little impact on the
Pathfinder tool.

Pathfinder Algorithm. After constructing the control
flow graph (CFG) from the victim binary, Pathfinder takes
this CFG and the observed PHR value as inputs and pro-
vides a list of all possible paths that could yield the same
PHR as output. This algorithm starts from the exit block of
the victim’s CFG and systematically explores predecessor
nodes in a recursive manner, focusing specifically on those
capable of fulfilling the conditions for the lowest doublet of
the PHR. Given that this doublet is exclusively updated by
the last taken branch, we can eliminate predecessors that do
not match that doublet. The algorithm then continues recur-
sively, thoroughly evaluating each viable candidate among
the predecessor nodes. If, at any point, it encounters a node
where no predecessors meet the PHR criteria and analysis
is still incomplete, it discards that option and proceeds to
the next candidate. This process persists until it identifies
all the potential paths matching the observed PHR, with the
majority of cases yielding only a single path.

For example, consider the code snippet presented in List-
ing 1, which illustrates a looped implementation of AES
encryption using AES-NI instructions. Let’s assume we run
this code with a 128-bit key length, which should involve 10
encryption rounds. Afterward, we read the PHR and provide
both the PHR value and the binary to the Pathfinder Tool.
Figure 6 illustrates the tool’s output, displaying the runtime
control flow graph (CFG), with red edges indicating the exe-
cuted paths. As illustrated in the graph, the execution starts

776



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yavarzadeh et al.

at basic block 1 (BB 1), proceeds to BB 2, and subsequently
to BB 3, where it iterates nine times. Then, it advances to BB
4 before reaching the exit point at BB 5.

This algorithm not only identifies the path that generates
the observed PHR but also provides information about the
victim’s execution, including (1) the branches taken or not
within the victim’s code, (2) the number of iterations within
each loop, and (3) the PHR values at each basic block.

Evaluation. We evaluate the accuracy of Pathfinder by (1)
rigorously testing well-designed microbenchmarks, includ-
ing challenging scenarios such as varying loop iterations,
nested loops, and complex control flow graphs, and (2) vali-
dating real-world applications like AES encryption (depicted
in Figure 6). In all cases, Pathfinder accurately identifies
the precise path leading to the observed PHR value. While
most cases exhibit a single path generating the observed
PHR, intentionally crafted microbenchmarks may feature
multiple paths. However, the tool identifies all possible paths,
typically differing in just one CFG node, which allows the
attacker to infer the majority of the victim’s control flow. A
limitation arises with loops exceeding 194 iterations (with
invariant control flow between loop branches), where the
tool output indicates more than 194 iterations but cannot
specify the exact count. Nevertheless, this limitation does
not impede the tool from inferring the PHR at the loop en-
trance and continuing to capture all other control flow in
the code. We also expect the tool to begin to break down if
the target program reaches far enough back in the branch
history to cause evictions in the set associative PHT tables.
However, due to the size of the tables and the entropy of the
PHR we have not actually seen this in practice, even in our
large case study in Section 8 that recovers tens of thousands
of branches.

7 Attack Surface Analysis
In this section, we evaluate the effectiveness of our attack
primitives in breaching various security isolation boundaries,
including those between userspace and kernel code, concur-
rent threads on simultaneous multithreaded (SMT) cores,
and SGX enclaves. Additionally, we examine the effect of
Intel’s IBPB/IBRS countermeasures on our attack primitives.

7.1 Kernel vs. Userspace
To test if the PHR is affected during the kernel-to-user tran-
sition, we perform a read operation on the PHR value imme-
diately after initiating a syscall. We analyze various syscalls,
including getppid, geteuid, and our own customized syscalls,
and conduct our experiments on kernel version 6.3.0-generic.
Our experiments demonstrate that the syscall entrance and
exit introduce approximately 23 and 7 branch outcomes into
the PHR, respectively. As a result, we can capture over 160
unique branch histories related to those specific system calls
using the Read PHRmacro. In the reverse scenario, where the

User/Kernel SGX Enclave
SMT

Intel Defenses
Enter Exit Enter Exit IBPB IBRS

Read PHR ✓ ✓ ✓ ✓ ✗ ✓ ✓

Write PHR ✓ ✓ ✓ ✓ ✗ ✓ ✓

Read PHT ✓ ✓ ✓ ✓ ✓ ✓ ✓

Write PHT ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Attack Primitives Practicality.

kernel is entered, we also confirm that the PHR is not flushed,
allowing the user program to set a specific PHR value upon
entry that will impact kernel predictions. To further evaluate
the effectiveness of the Read/Write PHT macros, we designed
scenarios where user programs attempt to leak and/or poi-
son PHT entries used by conditional branches within sys-
tem calls. Our experiments confirm that the Read/Write PHT
macros function as intended, and there is no flushing and/or
partitioning of CBP entries across the user/kernel boundary.

7.2 Intel SGX
Intel Software Guard Extensions (SGX) [9] is a hardware-
based security extension that creates isolated, secure en-
claves for running applications, protecting sensitive data
and code from unauthorized access or modification. This
technology is widely used to secure data and applications in
various contexts, offering a secure execution environment
on Intel processors. We investigate the behavior of the PHR
and PHT entries during SGX enclave enter and exit opera-
tions. We conducted experiments similar to those discussed
in the preceding subsection to assess the functionality of
Read/Write PHR/PHT macros during enclave enter and exit.
The results are summarized in Table 2. We confirm that all of
our attack primitives work consistently across SGX enclave
boundaries.

7.3 Simultaneous Multithreading (SMT)
Nearly all modern high-performance CPUs implement si-
multaneous multithreading (SMT) [61], which shares the
branch prediction unit, including the CBP. We conduct an
investigation to assess the effectiveness of our Read/Write
PHR/PHT macros in SMT mode, specifically to determine if
one co-resident thread can potentially leak or influence the
PHR and/or PHT in the other co-resident thread. Our find-
ings show that the PHR (as expected) is not shared between
two SMT threads and each logical SMT core has its own
dedicated PHR. On the other hand, we found that the PHTs
are indeed shared and one malicious co-resident thread can
potentially leak or influence the branch direction prediction
in the other co-resident thread.

7.4 Intel IBPB/IBRS
The Indirect Branch Predictor (IBP) predicts indirect branch
targets using both branch address and the PHR [35, 71]. Pre-
vious studies have demonstrated that attackers exploit the

777



Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1 GLOBAL(void) _jpeg_idct(...)
2 {
3 // Pass 1: process columns
4 for (ctr = DCTSIZE; ctr > 0; ctr--) {
5 if (colptr[1] == 0 && colptr[2] == 0 && colptr[3] == 0 &&

colptr[4] == 0 && colptr[5] == 0 && colptr[6] == 0 &&
colptr[7] == 0) {

↩→
↩→

6 /* Simple Computation */
7 } else {
8 /* Complex Computation */
9 }
10 }
11 // Pass 2: process rows
12 for (ctr = 0; ctr < DCTSIZE; ctr++) {
13 if (rowptr[1] == 0 && rowptr[2] == 0 && rowptr[3] == 0 &&

rowptr[4] == 0 && rowptr[5] == 0 && rowptr[6] == 0 &&
rowptr[7] == 0) {

↩→
↩→

14 /* Simple Computation */
15 } else {
16 /* Complex Computation */
17 }
18 }
19 }

Listing 2. Overall Structure of the IDCT Function in libjpeg.

IBP [17, 20, 35, 76] in side channel attacks to gain control
over the execution flow. In response to these vulnerabili-
ties, Intel introduced two defensive measures: the Indirect
Branch Predictor Barrier (IBPB) [7] and the Indirect Branch
Restricted Speculation (IBRS) [8]. IBPB establishes a barrier
to prevent pre-barrier software from affecting post-barrier
indirect branch predictions and the IBRS restricts specula-
tive execution of indirect branches. Our findings (given in
Table 2) demonstrate that activating either or both of these
mitigations does not flush or partition the PHT or the PHR,
and consequently does not mitigate any of our attacks.

8 Image Recovery Attack: libjpeg
JPEG is a widely used standard for lossy image compression.
The libjpeg library [1], and its derivatives [2], are used widely
for JPEG image encoding/decoding.
The JPEG encoding process begins by breaking down an

original bitmap image into 8∗8 pixels. It employs a lossy com-
pression technique based on the discrete cosine transform
(DCT), which transforms the image from the spatial domain
to the frequency domain. Following this, each element of the
DCT output undergoes quantization, which is the only lossy
step in the process, where high-frequency coefficients, less
impactful on the overall image, are compressed into smaller
values, often rounding them to zeros. The quantized coef-
ficients are then organized and losslessly packed into the
output bitstream. The decoder reverses the encoding pro-
cess, beginning with dequantization and then performing an
inverse cosine discrete transform (IDCT) on each coefficient
matrix to generate 8 ∗ 8 bitmap blocks. Combining these
blocks regenerates the complete bitmap image.
The libjpeg software offers multiple IDCT implementa-

tions, all of which follow a shared structure outlined in List-
ing 2. This structure has two ‘for’ loops that iterate over

the 8 columns and 8 rows in the coefficient matrix, reflecting
the two-dimensional nature of the IDCT operation. The stan-
dard processing of a row/column in IDCT involves complex
computations. Yet, if all elements in a row/column are zeroes
except the first one (called a constant row/column), the com-
putation becomes much simpler. The IDCT implementations
in libjpeg take advantage of this optimization by checking
for this condition and performing simplified computations
when applicable.

From a security standpoint, this performance optimization
has substantial implications. Gaining insight into the runtime
control flow of the IDCT functionwould unveil the constancy
of specific rows/columns, ultimately leading to the exposure
of information about the original image.

Attack Scenario. We use the Unlimited Read PHR attack
primitive in conjunction with Pathfinder to uncover the pre-
cise runtime control flow of the image decompression pro-
cess, particularly within the IDCT function. This enables us
to identify which rows/columns are constant within each
block. Additionally, we know that the number of constant
rows/columns in a block corresponds to the block’s relative
complexity. We use this insight to recover the original image,
as we assign each 8∗8 block a value based on the normalized
number of constant rows/columns within it. Consequently,
the recovered image frequently exhibits a high similarity
to the results of edge detection, particularly in blocks po-
sitioned along the image’s edges, which tend to be more
complex than others.

Evaluation. We conducted an evaluation using a test set of
15 JPEG images. To create a diverse collection, we included
a range of images, including high-resolution photographs,
simpler logo-style images, QR codes, captchas, and more. Fig-
ure 7 presents three examples of successful image recovery
using our attack method. The first example demonstrates
the recovery of a QR code from the ASPLOS website, which
remains scannable despite some noise. The second and third
examples showcase the recovery of the ASPLOS logo and
website background image, respectively. The number of re-
covered branches roughly ranges from 1000 for simple logo-
style images to 20k for high-resolution images.

Comparison to Prior Works. Prior attacks on libjpeg pri-
marily exploited the page fault channel [69] to track the
number of constant rows/columns by distinguishing the
number of page faults, while cache side channel attacks [32]
were employed to monitor cache line access during array
look-ups for image recovery. However, these methods have
inherent limitations. Those attacks require elevated privilege
(i.e., root access), which makes them practical against the
specific threat model of Intel SGX, but not valid for other
threat models. Additionally, tight loops, small array index-
ing, and data accesses within code page or page boundaries
escaped detection, as the page fault channel’s granularity

778



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yavarzadeh et al.

Original Image Recovered Image Recovered Image (Colored)

Original Image Recovered Image

Figure 7. Examples of Recovered Images by Pathfinder.

is limited to the 4KB page size, constraining the temporal
and spatial resolution of such attacks. Furthermore, distin-
guishing between adjacent array indices that fall within a
single cache line remains challenging, and numerous mit-
igations have been introduced against cache side-channel
attacks [22, 47, 48, 50, 67].
Alternatively, an attacker can use the instruction cache

channel to determinewhich instructionswere fetched, thereby
inferring whether a branch instruction was taken or not.
However, granularity of such an attack is still limited to the
cache-line size (64 bytes). In addition, such an attack still re-
quires privilege elevation and the ability to constantly inter-
rupt (single-stepping), or to probe the instruction cache from
a co-located SMT thread; otherwise it can only determine
the outcome of a single execution instance of each branch
(best case). In contrast, Pathfinder can capture the entire
control-flow of the victim, even in scenarios where branch
instructions are repeatedly executed in a tight loop, without
relying on elevated privileges or SMT co-residency, making
it applicable to a significantly broader range of scenarios. Fur-
thermore, in the specific case of the libjpeg attack, Pathfinder
not only quantifies the number of constant rows/columns
but also precisely identifies which rows and columns were
constant. This capability allows for the extraction of addi-
tional features from a secret image, such as new insights into
the frequency domain.

9 Leaking AES Keys
In this section we develop a new Spectre-style attack on
the widely used AES algorithm to extract encryption keys.
We show that reduced-round ciphertexts can be captured
via speculative execution channels, and used in conjunction
with the full-round ciphertext to recover the AES key, even
from constant-time implementations that leverage AES-NI
hardware extension. Before diving into the details of our
attack scenario, we start with a brief refresher on AES.

1 function encryption_oracle()
2 {
3 plaintext = random_bytes();
4 ciphertext = encrypt(plaintext);
5 encodedtext = base64_encode(ciphertext);
6 sidechannel_send(encodedtext);
7 return encodedtext;
8 }

Listing 3. An encryption oracle based on AES. The attack
leverages this oracle to obtain the encoded ciphertext and
leak some information about it via a side channel.

9.1 AES Background
AES operates on fixed-size blocks of data, typically 128 bits,
and employs several rounds of operations to transform plain-
text into ciphertext. AES offers varying key lengths, includ-
ing 128, 192, and 256 bits, each corresponding to 10, 12, or
14 rounds of operations, respectively. AES follows four main
operations in each regular round: SubBytes, ShiftRows, Mix-
Columns, and AddRoundKey, with the final round differing
by excluding the MixColumns operation. SubBytes replaces
bytes using a lookup table, ShiftRows rotates rows, Mix-
Columns linearly transforms columns, and AddRoundKey
XORs with a round key. AES-NI (Advanced Encryption Stan-
dard New Instructions) is an x86 instruction set extension
designed to accelerate AES encryption and decryption for
enhanced speed and security on Intel processors.

9.2 Attack Overview
The attacker repeatedly queries an AES encryption oracle

holding a secret key, which the attacker seeks to recover (see
Listing 3). The oracle outputs the ciphertext and, during its
post-processing, unintentionally exposes side-channel infor-
mation about it, such as whether a specific byte is zero or not.
This scenario often arises when encoding encrypted data, e.g.,
during the transfer of encrypted data in JSON text format or
the transmission of images [19, 41]. For example, an oracle
encrypts the data and then applies post-processing text en-
coding, such as base64_encode(aes_encrypt(data)), be-
fore outputting the encoded data [27, 46]. The above attack
scenario also applies to decryption where a random cipher-
text is processed by the oracle and the attacker can observe
the plaintext. Our encryption oracle is the looped implemen-
tation of AES encryption using AES-NI within the Intel-IPP
library [6], found in Listing 1. Intel-IPP offers an assembly
implementation that uses unrolled AES when the plaintext
size is less than 64 bytes, employing the looped version oth-
erwise.

We poison the PHTs to induce the victim to speculatively
exit the loop early (e.g., in the 2𝑛𝑑 iteration instead of 9𝑡ℎ
iteration when a 128-bit key is being used), returning the
reduced-round ciphertext to the attacker through the side-
channel. At some later stage in the pipeline, when the pro-
cessor finally executes the branch instruction within the

779



Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

pipeline and recognizes the prior prediction as incorrect, it
squashes the instructions that were speculatively executed,
including those initiated by potential attackers. During this
speculative window, however, the microarchitectural arti-
fact of the ciphertext can be leaked through various covert
channels like the data cache [31, 60, 70]. In the following, we
provide a comprehensive breakdown of the attack steps.

(Mis)Training the Branch Predictor. Our objective is to
induce a misprediction in the 𝑖𝑡ℎ iteration of the ‘for’ loop
in Listing 1 (line 5). For this, we manipulate specific entries
of the PHTs that will be looked up when the processor pre-
dicts the victim branch direction using the CBP. This CBP
lookup operation occurs based on the <PHR, PC> combina-
tion. Utilizing the (Extended) Read PHR attack primitive, we
retrieve the PHR value after the victim function and using
the Pathfinder Tool, we determine the exact PHR value in
the ‘i-th’ iteration. Subsequently, we employ the Write PHT
attack primitive with the observed PHR value to modify the
specific entry in the PHTs corresponding to the <PHR, PC>
combination, marking it as ‘not-taken.’ Consequently, when
the processor looks up the PHT, it will retrieve a ‘not-taken’
prediction and exit the loop early in a speculative manner.
To extend the speculation window, we flush the variable

that stores the number of encryption rounds (which is 10
for 128-bit key) from the cache, which results in a delay of a
couple hundred cycles until the correct number of rounds
is retrieved from memory and the mispredicted branch is
resolved in the pipeline. By the time the branch mispredict
is detected and resolved, the reduced-round ciphertext has
already been leaked through the side-channel gadget.

Recovering the Ciphertext. We employ the Flush+Reload
technique [70], which allows us to determine through a cache
side-channel whether a specific memory address has been
accessed. Our approach depends on how the ciphertext has
been leaked through the side channel. We can either rely
on the gradual leakage of the reduced-round ciphertext, one
byte at a time, akin to previous work [57, 63] that employs
similar assumptions regarding the encoding of transient ci-
phertext/plaintext. We achieve this by selecting a byte and
using it as an access index into a 256-page array, and ex-
amining which of the 256 pages has been accessed, thus
retrieving one byte of the reduced-round ciphertext. Alter-
natively, we can also assume a side-channel oracle that only
leaks whether a byte of the ciphertext equals a predefined
value. In this case, we only need to check if a single cache
line has been accessed or not, while repeating the attack
several times with different random inputs until we detect
that the transient ciphertext includes the expected byte.

Key Extraction Algorithm. Once we have the ability
to obtain reduced-round AES ciphertexts (in particular an
AES ciphertext that has two rounds), we can follow a sim-
ilar key recovery strategy to that of [57]. We give a brief

overview here but for brevity refer to [57] for the full cryp-
tographic details. A two round ciphertext is computed as
𝑅𝑅𝐶 = 𝑘2 ⊕ 𝑆𝑅(𝑆𝐵(𝑘1 ⊕𝑀𝐶 (𝑆𝑅(𝑆𝐵(𝑘0 ⊕ 𝑃))))), where 𝑘𝑖 is
the round key for round 𝑖 . Since a two round AES ciphertext
only contains one MixColumns operation, there is very little
diffusion throughout. This allows for a relatively straightfor-
ward correspondence between the reduce-round ciphertext
and plaintext which we can exploit to recover the round key
and then the encryption key. Building upon this, we have
developed a software algorithm capable of processing both
reduced-round and full-round AES ciphertexts to extract the
AES key, which significantly improves the practicality of our
proof-of-concept.

Evaluation. We use the Intel-IPP [6] AES ECB Encryption
function as our victim model, utilizing a 128-bit key for en-
crypting a 128-byte data block. As previously mentioned, our
attack is capable of speculatively terminating the victim loop
at any iteration, in this case ranging from the first to one
less than the total number of rounds. We rigorously test all
of these, leaking the ciphertext and subsequently verifying
the correctness of the recovered reduced-round ciphertext.
To establish a ground truth for comparison, we call the vic-
tim function with the reduced number of rounds and record
the results. We determine the success rate by comparing
the number of stolen bytes by the attacker that match the
ground truth.We repeat this process 1000 times and calculate
the average success rate. On average, the attack succeeds
with a probability of 98.43%. It is noteworthy that our attack
scenario extends beyond AES ECB encryption and is applica-
ble to other cryptographic functions, including various AES
modes (CBC, CFB, CTR, etc.), as they also employ a looped
implementation susceptible to our attack strategy.

Comparison to Prior Works. Previous Spectre attacks
on AES [57] manipulated the base predictor, affecting only
the first or a few instances of a branch at a specific address.
However, with complete control over the PHR and PHTs,
we can influence an arbitrary instance of a branch executed
many times with just one call. This becomes particularly
crucial when the attacker aims to manipulate branch pre-
diction in target code featuring loops or branch instructions
executed many times with varying directions, or where a
mispredict on a particular iteration would be helpful, or mul-
tiple mispredicts in different iterations.

10 Mitigation Strategies
This section discusses possible mitigation strategies.

10.1 Mitigating PHR Attacks
This research represents a major departure from prior re-
search, which predominantly concentrated on the PHT state,
by shedding light on the vulnerability of the PHR state to
leakage, thereby exposing crucial information regarding the
runtime control flow, and in particular the global ordering of

780



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yavarzadeh et al.

all control flow. The heightened sensitivity of fine-grained
control-flow-reads underscores the increased importance of
avoiding secret-dependent control flow, as these vulnerabili-
ties become more readily exploitable. The most straightfor-
ward software-based solution for mitigating the (Unlimited)
Read PHR is to flush the PHR using 194 unconditional
direct branches during context switching between differ-
ent security domains. Because unconditional direct branches
do not interact with the PHTs at all, this prevents the at-
tacker from exploiting the PHTs as a side-channel to recon-
struct the PHR beyond 194. Less costly, we could add a small,
non-deterministic number of random branches into the PHR
during context switching. This randomization of the PHR
value would prevent attackers from obtaining the same PHR
upon repeated calls to the victim, significantly reducing the
attacker’s ability to read the PHR. However, the proposed
mitigation strategies are not without their limitations:
1. The full reverse engineering effort would have to be re-

peated for each new generation of processors from dif-
ferent vendors to confirm that these mitigations remain
valid.

2. The randomization approach may still be vulnerable to a
brute force attack (but likely requiring orders of magni-
tude more time).

Further study is needed to evaluate the effectiveness and
efficiency of these approaches.

10.2 Mitigating PHT Attacks
In contrast to prior attacks [26, 35, 57], which induce mispre-
dictions at simple conditional branches (e.g., bounds check
‘if’ statement) primarily through base predictor poisoning,
our Read/Write PHT attacks enable highly precise PHT poi-
soning, allowing for the targeting of specific iterations within
a loop. The introduction of fine-grained control-flow-writes
makes it more critical to consider non-deterministic spec-
ulative control-flow when mitigating Spectre attacks, and
significantly increases the set of dynamic branches that can
be targeted effectively with a poisoning attack. To effectively
counter the Read/Write PHT attacks, we propose two mitiga-
tion strategies: (1) flushing the PHTs during context switches
or across security boundaries, and/or (2) physically partition-
ing the CBP into distinct security domains. For instance,
the Half&Half defense mechanism [71] can be used to par-
tition the PHTs between two SMT threads or between the
userspace and kernel boundaries. However, this method is
limited to partitioning the CBP into two parts and may not
be suitable for complex scenarios involving the multiplexing
of partitions across various security boundaries. Flushing the
PHTs in software requires around 100k instructions (mostly
branches) – we have run this. This is prohibitively expensive
for all but the most security-critical scenarios. Better would
be hardware support for flushing.

Additionally, several previous works have proposed novel
designs for Branch Prediction Units to mitigate branch-based

side-channel attacks, which, if implemented, could also mit-
igate Read/Write PHT attacks. These approaches can be
broadly categorized into two categories: (1) partitioning-
based designs [65] and (2) encryption-based methods [37,
79–82]. The Branch Retention Buffer (BRB) [65] partitions
the most useful predictor components to isolate separate
contexts. Lee et al. [37] proposed a two-level encryption
method: randomizing the set-index by encrypting the Pro-
gramCounter (PC) with a per-context secret key and encrypt-
ing data within each branch predictor entry. In STBPU [79],
each software entity receives a unique, randomly-generated
secret token (ST) that customizes the data representations,
thereby enhancing security against potential attacks.

While each of these can be effective at isolating the PHT,
they all fail to isolate the PHR. Thus, they are all suscepti-
ble to PHR Read/Write attacks. In particular, the PHR Read
attack only makes use of the PHR and in no way depends
on victim PHT entries. Thus, all attacks based on PHR Read
would still work on these proposed secure predictors, with
no modification. The Extended Read PHR attack does rely
on victim PHT data, and would not work in its current form,
and would likely be fully mitigated. To mitigate the PHR
Read/Write attacks in hardware, an effective approach could
be to implement a dedicated table of global histories (PHRs),
with each security domain having its own designated PHR.
This prevents the sharing of PHRs among different security
domains.

11 Related Work
We can classify branch prediction based side-channel at-
tacks based on the specific component they target. A com-
plex, modern BPU features multiple components (e.g., BTB,
IBP, RSB, and CBP) for making various predictions. The
initial research on branch-based vulnerabilities primarily
focused on exploiting the BTB [12–14, 25, 38, 68, 74, 78]. For
instance, Acıiçmez et al. [12–14] introduced four attacks on
BTB, demonstrating them against RSA implementations.

More recently, Spectre attacks [35] demonstrate that com-
bining CBP/BTB/IBP mispredictions with speculative ex-
ecution can be leveraged for security attacks. Spectre V1
targets the CBP, and exploits speculative execution to access
data outside the bounds of an array, despite the presence
of a bounds check (by forcing a misprediction of the check-
ing branch). In Spectre V2, the attacker trains the target
predictors (BTB and/or IBP) such that the victim specula-
tively jumps to a chosen disclosure gadget. Like Spectre V2,
Barberis et al. [17] introduce cross-privilege Branch Tar-
get Injection (BTI) attacks [20, 21, 35, 78] on systems that
employ isolation-based hardware defenses [7, 8]. This tech-
nique, known as Branch History Injection (BHI), manipulates
branch history in the IBP to influence it to select a specific
entry when transitioning from user to supervisor or guest

781



Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

to VMX root mode. This, in turn, triggers the transient exe-
cution of a disclosure gadget at the predicted target.
BranchScope [26] targets the CBP via the base predictor

structure. BranchScope fires off hundreds of thousands of
random branches to make the CBP use the basic predictor
instead of the complex global one (PHTs). It then creates col-
lisions within the base predictor by carefully manipulating
branch addresses, allowing it to potentially leak or mod-
ify the values stored in the base predictor entries. Similarly,
BranchSpec [23] demonstrates that the branch predictor state
undergoes updates in the speculative path, potentially lead-
ing to information leakage. These methods both bypass the
complex structures of the CBP, because those details were
unknown, but instead heavily leaned on the base predictor.
In contrast, our approach leverages recently disclosed de-
tails [71] about the intricate workings of the entire CBP in
Intel CPUs, making it a powerful and dangerous medium for
side-channel attack. While that work used the reverse engi-
neering information to devise a new isolation mechanism
for the branch predictor, we exploit this knowledge to craft
novel side-channel attacks.

12 Conclusion
This paper demonstrates that conditional branch predictors
on recent machines, which are shared across all security
domains, can be exploited for newmicroarchitectural attacks.
With precise control of both the global history (path history
register) and contents of prediction tables (base predictor
and PHTs), attacks can be launched with an entirely new
level of precision. Rather than being able to capture the
biases (or most recent outcomes) of individual branches, this
work captures a complete control flow history of all branch
behavior going back at least tens of thousands of branches.
While previous poisoning attacks typically target the first
instance of a branch, this work can create a misprediction of
any instance of a branch even if it is executed thousands of
times.
These capabilities are demonstrated on two use case at-

tacks. An attack on libjpeg captures all interesting features
of an image by perfectly capturing the complete control flow
of the routine. An attack on a constant-time AES algorithm
exploits the ability to induce the main loop to exit and return
intermediate results at any loop iteration.

Acknowledgments
The authors would like to thank to Shravan Narayan for
his insightful discussions, and the anonymous reviewers for
their helpful suggestions.

This work was partially supported by the Air Force Office
of Scientific Research (AFOSR) under award number FA9550-
20-1-0425; the Defense Advanced Research Projects Agency
(DARPA) under contract numbers W912CG-23-C-0022 and

HR00112390029; the National Science Foundation (NSF) un-
der grant numbers CNS-2155235, CNS-1954712, and CAREER
CNS-2048262; the Alfred P. Sloan Research Fellowship; and
gifts from Intel, Qualcomm, and Cisco.

References
[1] libjpeg. https://libjpeg.sourceforge.net/. [Online].
[2] libjpeg-turbo. https://libjpeg-turbo.org/. [Online].
[3] The 2nd jilp championship branch prediction competition (cbp-2).

http://www.jilp.org/cbp2006, 2006. [Online].
[4] The 3rd jilp championship branch prediction competition (cbp-3). http:

//www.jilp.org/cbp2011, 2011. [Online].
[5] The 4th jilp championship branch prediction competition (cbp-4). http:

//www.jilp.org/cbp2014, 2014. [Online].
[6] Intel ipp, intel integrated performance primitives, 2023.
[7] Intel® indirect branch predictor barrier (ibpb). https://www.intel.com/

content/www/us/en/developer/articles/technical/software-security-
guidance/technical-documentation/indirect-branch-predictor-
barrier.html, 2023.

[8] Intel® indirect branch restricted speculation (ibrs). https://www.intel.
com/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/indirect-branch-
restricted-speculation.html, 2023.

[9] Intel® software guard extensions (intel® sgx). https://www.intel.com/
content/www/us/en/architecture-and-technology/software-guard-
extensions.html, 2023.

[10] Onur Aciiçmez. Yet another microarchitectural attack: exploiting i-
cache. In Proceedings of the 2007 ACM workshop on Computer security
architecture, pages 11–18, 2007.

[11] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results
on instruction cache attacks. In International workshop on crypto-
graphic hardware and embedded systems, pages 110–124. Springer,
2010.

[12] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch
prediction vulnerabilities in openssl and necessary software counter-
measures. In Cryptography and Coding, pages 185–203, 2007.

[13] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power
of simple branch prediction analysis. In Computer and Communications
Security (CCS), pages 312–320, 2007.

[14] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In RSA Conference, pages 225–242,
2007.

[15] Onur Acıiçmez and Werner Schindler. A vulnerability in rsa imple-
mentations due to instruction cache analysis and its demonstration
on openssl. In Topics in Cryptology–CT-RSA 2008: The Cryptographers’
Track at the RSA Conference 2008, San Francisco, CA, USA, April 8-11,
2008. Proceedings, pages 256–273. Springer, 2008.

[16] Endre Bangerter, David Gullasch, and Stephan Krenn. Cache games
- bringing access based cache attacks on aes to practice. Cryptology
ePrint Archive, Paper 2010/594, 2010. https://eprint.iacr.org/2010/594.

[17] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cris-
tiano Giuffrida. Branch history injection: On the effectiveness of
hardware mitigations against {Cross-Privilege} spectre-v2 attacks. In
31st USENIX Security Symposium (USENIX Security 22), pages 971–988,
2022.

[18] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kur-
mus. Smotherspectre: exploiting speculative execution through port
contention. In Computer and Communications Security (CCS), pages
785–800, 2019.

[19] Romie Oktovianus Bura and Hanum Shirotu Nida. Image transmission
using base64 encoding and advanced encryption standard algorithm
based on socket programming. In 2021 6th International Workshop on

782

https://libjpeg.sourceforge.net/
https://libjpeg-turbo.org/
http://www.jilp.org/cbp2006
http://www.jilp.org/cbp2011
http://www.jilp.org/cbp2011
http://www.jilp.org/cbp2014
http://www.jilp.org/cbp2014
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://eprint.iacr.org/2010/594


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yavarzadeh et al.

Big Data and Information Security (IWBIS), pages 115–120, 2021.
[20] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-

jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution
attacks and defenses. In 28th USENIX Security Symposium (USENIX
Security 19), pages 249–266, 2019.

[21] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx en-
claves via speculative execution. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 142–157. IEEE, 2019.

[22] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware performance
counters. Applied Soft Computing, 49:1162–1174, 2016.

[23] Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan Yao. Branchspec:
Information leakage attacks exploiting speculative branch instruction
executions. In International Conference on Computer Design (ICCD),
pages 529–536. IEEE, 2020.

[24] Avinoam N Eden and Trevor Mudge. The yags branch prediction
scheme. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 69–77, 1998.

[25] Dmitry Evtyushkin, Dmitry Ponomarev, andNael Abu-Ghazaleh. Jump
over aslr: Attacking branch predictors to bypass aslr. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1–13,
2016.

[26] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. Branchscope: A new side-channel attack on direc-
tional branch predictor. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2018.

[27] F Fathurrahmad and E Ester. Development and implementation of the
rijndael algorithm and base-64 advanced encryption standard (aes) for
website data security. International Journal of Scientific & Technology
Research, 9(11):6–11, 2020.

[28] Agner Fog. The microarchitecture of intel, amd and via cpus. https:
//www.agner.org/optimize/microarchitecture.pdf, 2023. [Online].

[29] B Gras, KAVEH Razavi, H Bos, and C Giuffrida. Tlbleed: When pro-
tecting your cpu caches is not enough. Black Hat, 2018.

[30] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Transla-
tion leak-aside buffer: Defeating cache side-channel protections with
{TLB} attacks. In 27th USENIX Security Symposium (USENIX Security
18), pages 955–972, 2018.

[31] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+ flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), pages 279–299, 2016.

[32] Marcus Hähnel, Weidong Cui, and Marcus Peinado. {High-
Resolution} side channels for untrusted operating systems. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages 299–312,
2017.

[33] IBM. Power9 processor user’s manual. Technical report, IBM, 2019.
[34] Daniel A Jiménez and Calvin Lin. Dynamic branch prediction with per-

ceptrons. In International Symposium on High Performance Computer
Architecture (HPCA), pages 197–206, 2001.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. Com-
munications of the ACM, 63(7):93–101, 2020.

[36] Lee and Smith. Branch prediction strategies and branch target buffer
design. Computer, 17(1):6–22, 1984.

[37] Jaekyu Lee, Yasuo Ishii, and Dam Sunwoo. Securing branch predictors
with two-level encryption. ACM Transactions on Architecture and Code
Optimization (TACO), 17(3):1–25, 2020.

[38] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside {SGX}

enclaves with branch shadowing. In USENIX Security Symposium
(USENIX Security), pages 557–574, 2017.

[39] Fangfei Liu, Yuval Yarom, QianGe, Gernot Heiser, and Ruby B Lee. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium
on security and privacy, pages 605–622. IEEE, 2015.

[40] Nick Mahling. Reverse engineering of Intel’s branch predic-
tion. https://www.its.uni-luebeck.de/fileadmin/files/theses/BA_
NickMahling_ReverseEngineeringIntelsBranchPrediction.pdf, 2023.

[41] Muhammad Wito Malik, Diyanatul Husna, I Ketut Eddy Purnama,
Ingrid Nurtanio, Afif Nurul Hidayati, and Anak Agung Putri Ratna.
Development of medical image encryption system using byte-level
base-64 encoding and aes encryption method. In Proceedings of the 6th
International Conference on Communication and Information Processing,
pages 153–158, 2020.

[42] Scott McFarling. Combining branch predictors. Technical report,
Citeseer, 1993.

[43] Pierre Michaud. A ppm-like, tag-based branch predictor. JILP-
Championship Branch Prediction, 7:10, 2005.

[44] Milena Milenkovic, Aleksandar Milenkovic, and Jeffrey Kulick. De-
mystifying intel branch predictors. InWorkshop on Duplicating, De-
constructing and Debunking, 2002.

[45] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and
Berk Sunar. {CopyCat}: Controlled {Instruction-Level} attacks on
enclaves. In 29th USENIX security symposium (USENIX security 20),
pages 469–486, 2020.

[46] Muhammad Farras Muttaqin and Silvester Dian Handy Permana Yad-
darabullah. Implementation of aes-128 and token-base64 to prevent
sql injection attacks via http. International Journal, 9(3), 2020.

[47] Khang T Nguyen. Introduction to cache allocation technology in
the intel® xeon® processor e5 v4 family. https://www.intel.com/
content/www/us/en/developer/articles/technical/introduction-to-
cache-allocation-technology.html, 2016. [Online].

[48] Dan Page. Partitioned cache architecture as a side-channel defence
mechanism. Cryptology ePrint Archive, 2005.

[49] Shien-Tai Pan, Kimming So, and Joseph T Rahmeh. Improving the
accuracy of dynamic branch prediction using branch correlation. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 76–84, 1992.

[50] Mathias Payer. Hexpads: a platform to detect “stealth” attacks. In
Engineering Secure Software and Systems: 8th International Symposium,
ESSoS 2016, London, UK, April 6–8, 2016. Proceedings 8, pages 138–154.
Springer, 2016.

[51] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun. Frontal
attack: Leaking {Control-Flow} in {SGX} via the {CPU} frontend. In
30th USENIX Security Symposium (USENIX Security 21), pages 663–680,
2021.

[52] Andre Seznec. The o-gehl branch predictor. JILP-Championship Branch
Prediction, 2004.

[53] André Seznec. A 256 kbits l-tage branch predictor. JILP-Championship
Branch Prediction, 9:1–6, 2007.

[54] André Seznec. A new case for the tage branch predictor. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 117–127,
2011.

[55] André Seznec. Tage-sc-l branch predictors again. In JILP-
Championship Branch Prediction, 2016.

[56] André Seznec and Pierre Michaud. A case for (partially) tagged geo-
metric history length branch prediction. JILP-Championship Branch
Prediction, 8:23, 2006.

[57] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe,
Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Sioli
O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom. Spectre
declassified: Reading from the right place at the wrong time. In 2023
IEEE Symposium on Security and Privacy (SP), pages 1753–1770, 2023.

783

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.its.uni-luebeck.de/fileadmin/files/theses/BA_NickMahling_ReverseEngineeringIntelsBranchPrediction.pdf
https://www.its.uni-luebeck.de/fileadmin/files/theses/BA_NickMahling_ReverseEngineeringIntelsBranchPrediction.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html


Pathfinder: High-Resolution Control-Flow Attacks
Exploiting the Conditional Branch Predictor ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[58] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[59] James E. Smith. A study of branch prediction strategies. In International
Symposium on Computer Architecture (ISCA), page 135–148, 1981.

[60] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on AES, and countermeasures. Journal of Cryptology, 23(1):37–71,
2010.

[61] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In International Sym-
posium on Computer Architecture (ISCA), pages 392–403, 1995.

[62] Vladimir Uzelac and Aleksandar Milenkovic. Experiment flows and
microbenchmarks for reverse engineering of branch predictor struc-
tures. In International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 207–217, 2009.

[63] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. Lvi: Hijacking transient execution through microar-
chitectural load value injection. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 54–72. IEEE, 2020.

[64] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt logic.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 178–195, 2018.

[65] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Diestel-
horst, Bashir M Al-Hashimi, and Geoff V Merrett. Brb: Mitigating
branch predictor side-channels. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 466–477.
IEEE, 2019.

[66] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel haz-
ards in sgx. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2421–2434, 2017.

[67] Zhenghong Wang and Ruby B Lee. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of the 34th
annual international symposium on Computer architecture, pages 494–
505, 2007.

[68] Johannes Wikner, Daniël Trujillo, and Kaveh Razavi. Phantom: Ex-
ploiting decoder-detectable mispredictions. InMICRO Conference 2023,
2023.

[69] Yuanzhong Xu,Weidong Cui, andMarcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.
In 2015 IEEE Symposium on Security and Privacy, pages 640–656. IEEE,
2015.

[70] Yuval Yarom and Katrina Falkner. {FLUSH+ RELOAD}: A high reso-
lution, low noise, l3 cache {Side-Channel} attack. In USENIX Security
Symposium (USENIX Security), pages 719–732, 2014.

[71] Hosein Yavarzadeh, Mohammadkazem Taram, Shravan Narayan,
Deian Stefan, and Dean Tullsen. Half&half: Demystifying intel’s di-
rectional branch predictors for fast, secure partitioned execution. In
2023 IEEE Symposium on Security and Privacy (SP), pages 1220–1237.
IEEE Computer Society, 2023.

[72] Tse-Yu Yeh and Yale N Patt. Two-level adaptive training branch pre-
diction. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 51–61, 1991.

[73] Tse-Yu Yeh and Yale N Patt. Alternative implementations of two-level
adaptive branch prediction. ACM SIGARCH Computer Architecture
News, 20(2):124–134, 1992.

[74] Jiyong Yu, Trent Jaeger, and Christopher Wardlaw Fletcher. All your
pc are belong to us: Exploiting non-control-transfer instruction btb
updates for dynamic pc extraction. In Proceedings of the 50th Annual

International Symposium on Computer Architecture, pages 1–14, 2023.
[75] Jann Horn Google Project Zero. Speculative execution, variant 4:

speculative store bypass. https://bugs.chromium.org/p/project-zero/
issues/detail?id=1528, 2018.

[76] Jann Horn Google Project Zero. Reading privileged memory with
a side-channel. https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html, 2019.

[77] Charles Zhang. Mars: A 64-core armv8 processor. In Hot Chips, pages
1–23, 2015.

[78] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring
branch predictors for constructing transient execution trojans. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
667–682, 2020.

[79] Tao Zhang, Timothy Lesch, Kenneth Koltermann, and Dmitry Ev-
tyushkin. Stbpu: A reasonably secure branch prediction unit. In 2022
52nd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 109–123. IEEE, 2022.

[80] Lu-Tan Zhao, Rui Hou, Kai Wang, Yu-Lan Su, Pei-Nan Li, and Dan
Meng. A novel probabilistic saturating counter design for secure
branch predictor. Journal of Computer Science and Technology, 36:1022–
1036, 2021.

[81] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang, Jiazhen Li, Lixin
Zhang, Xuehai Qian, and Dan Meng. A lightweight isolation mech-
anism for secure branch predictors. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 1267–1272. IEEE, 2021.

[82] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang, Xuehai Qian, Lixin
Zhang, and Dan Meng. Hybp: Hybrid isolation-randomization secure
branch predictor. In HPCA, pages 346–359, 2022.

784

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html



