
Another Flip in the Wall of Rowhammer Defenses
Daniel Gruss1, Moritz Lipp1, Michael Schwarz1, Daniel Genkin2,

Jonas Juffinger1, Sioli O’Connell3, Wolfgang Schoechl1, and Yuval Yarom3,4

1 Graz University of Technology
2 University of Pennsylvania and University of Maryland

3 University of Adelaide
4 Data61

Abstract—The Rowhammer bug allows unauthorized modifica-
tion of bits in DRAM cells from unprivileged software, enabling
powerful privilege-escalation attacks. Sophisticated Rowhammer
countermeasures have been presented, aiming at mitigating the
Rowhammer bug or its exploitation. However, the state of the art
provides insufficient insight on the completeness of these defenses.

In this paper, we present novel Rowhammer attack and
exploitation primitives, showing that even a combination of all
defenses is ineffective. Our new attack technique, one-location
hammering, breaks previous assumptions on requirements for
triggering the Rowhammer bug, i.e., we do not hammer multiple
DRAM rows but only keep one DRAM row constantly open.
Our new exploitation technique, opcode flipping, bypasses recent
isolation mechanisms by flipping bits in a predictable and
targeted way in userspace binaries. We replace conspicuous
and memory-exhausting spraying and grooming techniques with
a novel reliable technique called memory waylaying. Memory
waylaying exploits system-level optimizations and a side channel
to coax the operating system into placing target pages at attacker-
chosen physical locations. Finally, we abuse Intel SGX to hide
the attack entirely from the user and the operating system,
making any inspection or detection of the attack infeasible.
Our Rowhammer enclave can be used for coordinated denial-
of-service attacks in the cloud and for privilege escalation on
personal computers. We demonstrate that our attacks evade all
previously proposed countermeasures for commodity systems.

I. INTRODUCTION

The Rowhammer bug is a hardware reliability issue in
which an attacker repeatedly accesses (hammers) DRAM
cells to cause unauthorized changes in physically adjacent
memory locations. Since its initial discovery as a security
issue [38], Rowhammer’s ability to defy abstraction barriers
between different security domains has been extensively used
for mounting devastating attacks on various systems. Examples
of previous attacks include privilege escalation, from native
environments [58], from within a browser’s sandbox [21],
and from within virtual machines running on third-party
compute clouds [63], mounting fault attacks on cryptographic
primitives [9, 53], and obtaining root privileges on mobile
phones [61]. Recognizing the apparent danger, these attacks
have sparked interest in developing effective and efficient
mitigation techniques. While existing hardware countermea-
sures such as using memory with error-correction codes (ECC-
RAM) appear to make Rowhammer attacks harder [38], ECC-
RAM is intended for server computers and is typically not
supported on consumer-grade machines.

Software-based mitigations, which can be implemented on
commodity systems, have also been proposed. These include
ad-hoc defense techniques such as doubling the RAM refresh
rates [38], removing unprivileged access to the pagemap
interface [39, 55, 58], and prohibiting the clflush instruc-
tion [58]. However, recent works have already bypassed these
countermeasures [6, 21, 61]. Other ad-hoc attempts, such as
disabling page deduplication by default [46, 54], only prevent
specific Rowhammer attacks exploiting these features [10, 53],
but not all Rowhammer attacks.

The research community proposed sophisticated defenses
which seemingly have solved the Rowhammer problem. Based
on the underlying primitives of these defenses, we introduce
a new systematic categorization into five defense classes:

• Static Analysis. Binary code is analyzed for specific
behavior, common in side-channel attacks, e.g., using high-
resolution timers or cache flush instructions [25, 32].

• Monitoring Performance Counters. Rowhammer relies
on frequent accesses to DRAM cells, e.g., using a Flush+
Reload loop. These frequent accesses are detected by moni-
toring CPU performance counters [6, 15, 22, 25, 32, 50, 68].

• Monitoring Memory Access Patterns. Rowhammer
causes unusual high-frequency memory access patterns to
two or more addresses in one DRAM bank. Rowhammer
can be stopped by detecting such access patterns [6, 16].

• Preventing Exhaustion-based Page Placement. Row-
hammer requires target pages to be on vulnerable memory
locations. All Rowhammer privilege escalation attacks so
far required memory exhaustion. Thus, preventing abuse of
memory exhaustion thwarts Rowhammer attacks [21, 61].

• Preventing Physical Proximity to Kernel Pages. As a
more complete solution, user and kernel memory cells are
physically isolated through the memory allocator, thwarting
all practical Rowhammer privilege-escalation attacks [11].

Notice that defenses in each class share the same assump-
tions, properties, and introduce the same form of protection.
Defenses from different classes complement each other. Thus,
given the extensive amount of research on Rowhammer coun-
termeasures, in this paper we ask the following question:

To what extent do the approaches above actually prevent
Rowhammer attacks? In particular, is it possible to success-
fully mount Rowhammer privilege-escalation attacks in the
presence of some (or even all) of the countermeasures above?

ar
X

iv
:1

71
0.

00
55

1v
1

 [
cs

.C
R

]
 2

 O
ct

 2
01

7

A. Our Results and Contributions

In this paper, we show that despite numerous works on
mitigating Rowhammer attacks, much remains to be done
to truly understand their effectiveness and how to mitigate
them. For this purpose, we introduce a new categorization for
Rowhammer defenses (which we already outlined above) as
a foundation for a systematic evaluation. Demonstrating the
insufficiency of existing mitigation techniques, we present a
novel Rowhammer attack and subsequent exploitation tech-
niques for privilege escalation which allows defeating the un-
derlying assumptions of all of the countermeasures mentioned
above. In particular, our attack is still applicable even in the
presence of all of the above countermeasures. We now describe
the four building blocks of our attack and how each building
block invalidates the assumptions of the defense classes.

Defeating Physical Kernel Isolation. The assumption of
physical kernel isolation is that Rowhammer-based privilege
escalation is only practical by flipping bits in kernel pages.
We void this assumption by introducing opcode flipping, a
technique for malicious and unauthorized modification of a
userspace program’s instructions by causing bit flips in its
opcodes. By applying this technique to sudo, we bypass
authentication checks and obtain root privileges.

Defeating Memory Access Pattern Analysis. All known
Rowhammer techniques require frequent alternating accesses
to two or more DRAM cells in the same DRAM bank. Con-
sequently, countermeasures detect when an attacker performs
such alternating accesses to two or more addresses in the same
DRAM bank. We present one-location hammering, a new type
of Rowhammer attack which only hammers one single address.
Since our attack only uses one memory address, it does not
require any knowledge of physical addresses and DRAM
mappings [34, 51, 63], allowing us to perform Rowhammer
attacks with even fewer requirements.

Page Placement Without Memory Exhaustion. Page
deduplication is usually disabled for security reasons [46, 54,
61] as a response to page deduplication attacks [8, 19, 59], in-
cluding Rowhammer attacks based on page deduplication [10,
53], Hence, attacks can only use memory exhaustion [21,
58, 61, 63] to surgically place a target page on a vulnera-
ble physical memory location. Consequently, countermeasures
aim to prevent adversarial memory exhaustion [21, 61]. We
introduce memory waylaying, a reliable technique exploiting
the Linux page cache to influence the physical location of
a target page. Crucially, unlike previous techniques, memory
waylaying does not exhaust the system memory and does not
cause out-of-memory situations, i.e., the system remains stable
and responsive.

Defeating Countermeasures based on Performance
Counters and Static Analysis. Intel SGX is an x86
instruction-set extension to securely and confidentially execute
programs in isolated environments, called enclaves, on poten-
tially adversary-controlled systems. Enclaves run with regular
user privileges and are further restricted for their own security
and safety, e.g., no system calls. To protect against compro-

mised or malicious operating systems and hardware, the mem-
ory of the enclave is encrypted to prevent any modification
or inspection of the enclave’s memory contents, even by the
operating system’s kernel and hardware components [17]. Fur-
thermore, enclaves are excluded from the CPU performance
counters [57]. Hence, this approach defeats countermeasures
which rely on monitoring performance counters [6, 22, 25, 50]
or on analyzing the application code or instruction stream for
Rowhammer attacks [25, 32].

B. Attack Scenarios

Our attacks apply to personal computers and cloud systems.
Hence, we demonstrate our attacks in both of these scenarios.
• Native Privilege Escalation Attack. Our Rowhammer

enclave can be used on personal computers to gain root
privileges on the system, even in the presence of all of the
defenses mentioned above.

• A Cloud Denial-of-Service Attack. Our Rowhammer
enclave can also be used in the cloud, to shut down a large
number of cloud machines in a coordinated way, i.e., a
“distributed” denial-of-service attack, by abusing Intel SGX
security mechanisms. When SGX detects an error in the
encrypted and integrity-checked memory region, it halts the
entire machine until a manual power cycle is performed. By
coordinating the error injection over multiple machines, an
attacker can potentially take down an entire cloud provider.

C. Paper Outline

The paper is organized as follows. Section II provides
background information. Section III introduces a new catego-
rization of state-of-the-art Rowhammer defenses. Section IV
defines our attacker model. Section V provides a high-level
overview of our attacks and the building blocks, which are then
detailed in Section VI (opcode flipping), Section VII (one-
location hammering), and Section VIII (memory waylaying).
Section IX summarizes and evaluates our attacks in practi-
cal scenarios. Section X discusses limitations and additional
observations. We conclude our work in Section XI.

II. BACKGROUND

In this section, we provide background information on the
Rowhammer bug and Rowhammer defenses. We also discuss
the prefetch side-channel attack which forms the primitive of
our memory waylaying technique (cf. Section VIII). Finally,
we provide background information on Intel SGX as well as
attacks on (and from) SGX enclaves.

A. The Rowhammer Bug

The increase in density and decrease in size of DRAM cells
leads to smaller capacitance of cells, allowing them to operate
using lower voltages and smaller charges. While these changes
have many advantages, such as an increase in DRAM capacity
and lower energy consumption, they also cause DRAM cells to
become more susceptible to disturbance errors and unintended
physical interactions between multiple cells. Such interactions
and disturbances often cause memory corruption, where the
bit-value of a DRAM cell is unintentionally flipped [48].

In 2014, Kim et al. [38] showed that such bit errors can be
caused in a DRAM row by rapidly accessing memory locations
in adjacent DRAM rows (also known as row hammering [26]).
To achieve these rapid DRAM accesses, data-caching mecha-
nisms need to be bypassed, either by flushing the cache, e.g.,
using clflush [38], cache eviction [1, 6, 21], or uncached
memory accesses [52]. We now describe different Rowhammer
techniques to obtain bit flips in the target row.

Single-sided hammering performs frequent memory ac-
cesses (hammering) to only one row which is adjacent to the
target row. In contrast, double-sided hammering hammers two
memory rows, one on each side of the target row. As the
two hammered rows must be on different sides of the target
row, double-sided hammering generally requires at least partial
knowledge of virtual-to-physical mappings while single-sided
hammering does not. Both hammering techniques produce
abnormal memory access patterns as they induce an enormous
number of row conflicts. Bit flips are highly reproducible:
Hammering the same offsets again yields the same bit flips.

We note that although the name single-sided hammering
may suggest that only a single memory location is hammered,
Seaborn and Dullien [58], who introduced this technique,
described it as hammering 8 memory locations simultane-
ously. On their systems, two or more randomly selected
addresses (i.e., no knowledge of virtual-to-physical mappings
is required) are in the same DRAM bank in 61.4% of the
cases. Hence, in fact, single-sided hammering aims to hammer
two memory locations in the same bank, but not necessarily
neighboring the victim row.

Not a privilege-escalation attack but an escape from the
NaCl sandbox was demonstrated by Seaborn and Dullien [58].
NaCl executes arbitrary generated code directly on the CPU
but sanitizes it using a blacklist, e.g., disallowing system calls.
To bypass the sanitizer, the attacker generates and sprays
unprivileged code over the entire memory and induces an
unpredictable random bit flip at an unpredictable random
memory location. With a low probability, the bit flip hits
the operand of an and instruction used to sanitize addresses
used by the sandboxed code. As the code can be read and
executed by the attacker, the attacker can verify whether
the random bit flip modified a random code location such
pointers are not fully sanitized, re-enabling traditional control-
flow diversion attacks. Bhattacharya and Mukhopadhyay [9]
exploited random Rowhammer bit flips in random memory
locations to produce a faulty RSA signature and consequently
recover the secret key.

However, as bit flips are highly reliable, more deterministic
and reliable attacks have been mounted, including privilege-
escalation attacks, sandbox escapes, and compromise of cryp-
tographic keys were demonstrated using memory spraying [21,
58, 63], grooming [61], or page deduplication [10, 53].

B. Rowhammer Defenses

Rowhammer defenses can be divided into three categories
based on their goal. The first category aims to detect Row-
hammer and, after detection, stop the corresponding processes.

The second category aims to neutralize Rowhammer bit flips
to prevent their exploitation. The third category aims to elim-
inate Rowhammer bugs. We now review previous works on
defending against Rowhammer attacks. We group the proposed
countermeasures using the above-mentioned three categories.

Rowhammer Detection Countermeasures. Irazoqui
et al. [32] proposed static code analysis to detect microar-
chitectural attacks in binaries in a fully automated way, e.g.,
when tested before loading them into an app store. Several
works detect on-going attacks on commodity systems using
hardware- and software-based performance counters [15, 16,
22, 25, 50, 68]. Herath and Fogh [25] proposed to use
performance counters for detection of suspicious cache activity
and then verifying that an attack is on-going by searching for
clflush instructions near the instruction pointer.

Rowhammer Neutralization Countermeasures. Van der
Veen et al. [61] and Gruss et al. [21] observed that the
system’s memory allocator only places kernel pages near
userspace pages in near-out-of-memory situations. Hence, they
propose to modify the allocator to prefer the out-of-memory
situation over the proximate placement of kernel and userspace
pages, effectively preventing memory exhaustion in turn of
spraying and grooming. This prevents known Rowhammer
attacks based on memory grooming or memory spraying, as
the target page cannot be evicted or placed anymore, i.e.,
neutralizes Rowhammer bit flips. Generalizing this, Brasser
et al. [11] presents G-CATT, an alternative memory allocator
that isolates user and kernelspace in physical memory ensuring
that the attacker cannot exploit bit flips in kernel memory, thus
neutralizing Rowhammer-induced bit flips. Disabling page
deduplication prevents Rowhammer attacks exploiting these
features [10, 46, 53, 54].

Rowhammer Elimination Countermeasures. Aweke
et al. [6] utilized performance counters to identify the locality
of frequently accessed DRAM addresses and to selectively
refresh nearby rows to mitigate possible Rowhammer attacks.
Corbet [16] discusses a kernel module using performance
counters that delays the CPU such that the DRAM module can
refresh the rows if the cache-miss rate in the system exceeds
a certain threshold, thus, slowing down not only Rowhammer
attacks but also legitimate workloads.

In addition to Rowhammer neutralization countermeasures
(e.g., G-CATT), Brasser et al. [11] also presented B-CATT,
a bootloader extension scanning the DRAM and blacklisting
vulnerable locations, thus, effectively reducing the amount of
usable memory, but also effectively eliminating the Rowham-
mer bug. However, as observed by Kim et al. [38], such a
countermeasure is not practical as it blocks almost the entire
memory. We validated this observation on multiple systems,
where on each system more than 95% of the physical memory
would be blocked by B-CATT. Seaborn and Dullien [58]
suggested eliminating the Rowhammer bug by blacklisting the
clflush instruction. This countermeasure was bypassed by
mounting cache-eviction-based Rowhammer attacks [1, 6, 21].

Besides building more reliable chips or employing ECC
modules, Kim et al. [38] and Kim et al. [37] proposed

probabilistic methods to eliminate bit flips in hardware. Every
time a row is opened and closed, other adjacent or non-
adjacent rows are opened with a low probability. Thus, if a
Rowhammer attack opens and closes rows, statistically the
adjacent rows are refreshed as well and, thus, bit flips are
averted. The LPDDR4 standard [33] specifies two features to
eliminate the Rowhammer bug: Target Row Refresh (TRR)
enables the memory controller to refresh rows adjacent to a
certain row; Maximum Activation Count (MAC) specifies how
often a row can be activated before adjacent rows need to
be refreshed. Furthermore, Ghasempour et al. [18] presented
ARMOR, a cache storing frequently accessed rows in order
to reduce the number of row activations in the DRAM and,
thus, eliminating the Rowhammer bug.

Hence, all elimination-based defenses are either not practi-
cal or require hardware changes, making them not applicable
for commodity systems. Commodity systems should instead be
protected using detection- or neutralization-based approaches.

C. The Prefetch Side-Channel Attack

The prefetch side-channel attack was presented by Gruss
et al. [20] as a way to defeat address-space-layout randomiza-
tion. The timing difference induced by the prefetch instruction
depends on the state of various caches. Prefetch instructions
ignore privileges and permissions, as these checks would be
performed upon a subsequent memory access anyway. Prefetch
side-channel attacks also exploit the operating system design.
In most operating systems, every valid memory location in a
user process is mapped at least twice, once in the user process
virtual memory, and once in the direct-physical mapping in the
kernelspace. The prefetch address-translation oracle exploits
this direct-physical mapping to determine whether an address
in userspace maps to a specific address in the direct-physical
mapping. If the guess was correct, the attacker learns the
physical address of a userspace virtual address. Hence, the
attacker does not have to rely on operating system interfaces
to obtain physical addresses for virtual addresses.

D. Intel SGX

Intel SGX is an x86 instruction-set extension for integrity
and confidentiality of code and data in untrusted environ-
ments [17]. For this purpose, SGX executes programs in so-
called secure enclaves which use protected areas of memory
that can only be accessed by the enclaves themselves. With
SGX implemented in the CPU, the enclave remains protected,
even if operating system, hypervisor, and hardware have been
compromised. Furthermore, remote attestation allows validat-
ing the integrity of the enclave by proving its correct loading.

Intel SGX explicitly protects against DRAM-based attacks,
e.g., cold-boot attacks, memory bus snooping, and memory-
tampering attacks, by cryptographically ensuring confidential-
ity, integrity, and freshness of data stored in the main memory.
Hence, it removes the DRAM from the trusted computing
base. The memory containing code and data of running
enclaves is a physically contiguous and encrypted block in
the DRAM, called EPC (enclave page cache) area, which is

protected from all non-enclave memory accesses using pro-
tection mechanisms implemented in the CPU. The encryption
by the Memory Encryption Engine (MEE) is transparent to
the processor’s cores [23]. The MEE utilizes a Merkle tree to
detect when the encrypted code and data stored in the DRAM
have been tampered with. The MEE provides freshness to the
integrity tags to mitigate replay attacks, i.e., an attacker uses
an old encrypted page to replace a newer encrypted page to
attack the enclave.

If an integrity or freshness error occurred, Intel SGX aborts
the execution of the memory fetch immediately, and the MEE
emits an error signal. Thus, the unverified data of the DRAM
will never be loaded into the last-level cache [23]. Moreover,
the MEE locks the memory controller, preventing any future
memory operations (potentially incurring data corruption),
causing the system to halt until it is rebooted.

E. Attacks on (and from) Secure Enclaves

While Intel does not claim to protect against side-channel
attacks that deduce information of collected power statistics,
performance statistics, branch statistics, or information on
pages accessed via page tables [4], several such attacks have
been demonstrated. Xu et al. [65] demonstrated a page fault
side-channel attack from a malicious operating system to
extract sensitive information, e.g., text documents and images.
Brasser et al. [12] demonstrated a Prime+Probe cache side-
channel attack, extracting 70% of an RSA private key in an
enclave. Furthermore, Schwarz et al. [57] mounted a cache
side-channel attack from within an enclave to extract a full
RSA private key of a co-located enclave. Xiao et al. [64]
mounted control-flow inference attacks on recent SSL libraries
running in secure enclaves. Moghimi et al. [47] presented
CacheZoom, a tool that provides a high-resolution channel
to track all memory accesses of SGX enclaves to mount key
recovery attacks. Wang et al. [62] systematically analyzed
side-channel threats of SGX and identified 8 potential side-
channel attack vectors. However, Intel considers all of these
attacks out of scope, due to their side-channel nature.

Attacks that rely on shared memory (e.g., Flush+
Reload [66]) cannot be mounted, as enclave memory is
inaccessible for other enclaves, processes, and the operating
system. However, as enclaves use pages in the same DRAM
rows, Wang et al. [62] showed that enclaves can mount DRAM
row-hit side-channel attacks on other enclaves by running a
cross-enclave DRAMA attack [51].

III. CATEGORIZATION OF STATE-OF-THE-ART DEFENSES
FOR COMMODITY SYSTEMS

Discussing Rowhammer defenses based on their goal (de-
tection, neutralization, and elimination; cf. Section II-B), does
not allow a thorough analysis and comparison, as the primi-
tives of the different defenses in each category vary widely.
As we have seen in Section II-B, none of the elimination-
based defenses are practical or applicable to commodity sys-
tems. Hence, in this paper, we only focus on detection- and
neutralization-based defenses. In this section, we introduce a

TABLE I: Rowhammer defenses for commodity systems.

Methodology
Defense M

A
SC

A
T

[3
2]

C
hi

ap
pe

tta
et

al
.[

15
]

Z
ha

ng
et

al
.[

68
]

H
er

at
h

an
d

Fo
gh

[2
5]

H
ex

PA
D

S
[5

0]

G
ru

ss
et

al
.[

22
]

A
N

V
IL

[6
]

C
or

be
t

[1
6]

N
o

O
O

M
[2

1,
61

]

G
-C

A
T

T
[1

1]

B
-C

A
T

T
[1

1]

T
R

R
[3

3]

M
A

C
[3

3]

PA
R

A
/C

R
A

/P
R

A
[3

7,
38

]

A
R

M
O

R
[1

8]

E
C

C
/C

hi
pk

ill
[2

7,
38

]

R
ef

re
sh

R
at

e
[3

8]

DETECTION
Static Analysis

Performance Counters
Memory Access Pattern

NEUTRALIZATION
Physical Proximity
Memory Footprint

ELIMINATION
Bootloader

Hardware Modification
BIOS Update

Symbols indicate whether a defense is part of defense class (), optional
aspects of the defense are part of a defense class (), or a defense is not

part of a defense class ().

novel systematic categorization for state-of-the-art defenses for
commodity systems.

In our evaluation of defenses we identified the following 5
defense classes which can be applied to commodity systems:
D1. Detection through static analysis.
D2. Detection through performance counter analysis.
D3. Detection through analysis of memory access patterns.
D4. Prevention by strictly avoiding physical proximity.
D5. Prevention by preventing conspicuous memory footprints.
Other defense classes (bootloader- or BIOS-update-based)
have already been shown to be ineffective (cf. Section II-B), or
cannot be applied to commodity systems (hardware modifica-
tions). Table I provides an overview of Rowhammer defenses
and the corresponding defense classes. We defer a discussion
of effective elimination-based defenses (requiring hardware
changes) to Section X-B.

In the following, we briefly describe the assumptions and
implications for each of the defense classes, as well as an
exhaustive list of defenses for each class.

Static Analysis. The underlying assumption of defenses
based on static analysis (D1) is that the attack (binary) code
can be accessed. This defense class is especially interesting for
offline analysis, e.g., before adding software to an app store.
If the detection works, the user cannot be attacked anymore.
Static analysis is used by Irazoqui et al. [32] in MASCAT, an
automated static code analysis tool to detect microarchitectural
attacks on a large scale. Herath and Fogh [25] proposed to
suspend programs with high cache miss rates and analyze
instructions near the instruction pointer.

Performance Counter Monitoring. The underlying as-
sumptions of defenses based on performance counter anal-
ysis (D2) are that the performance counters are available
and that they include operations of the attacker program. A
typical parameter for Rowhammer detection is the number
of cache hits and cache misses. Detecting Rowhammer at
runtime leaves a theoretical chance of missing an attack. If the

detection works, attacks are stopped before they can exploit a
bit flip. The use of performance counters is the basis of several
defenses [22, 25, 50]. The underlying Flush+Reload loop of
Rowhammer is also detected by cache attack defenses [15, 68].

Memory Access Patterns Monitoring. The underlying
assumptions of defenses based on memory access patterns
(D3) are that Rowhammer requires distinguishably abnormal
memory access patterns and that these patterns can be de-
tected. Double-sided hammering always accesses two memory
locations with a distance d of 1 ≤ d < 2 rows, i.e.,
the two memory locations are in different rows, adjacent to
the same victim row. Other Rowhammer attacks also access
multiple memory locations in the same DRAM bank at a
high frequency. If the underlying assumptions hold, attacks are
likely stopped before they can induce a bit flip. Memory access
patterns are used in different defenses [6, 16]. ANVIL [6]
applies access pattern heuristics to distinguish Rowhammer
attacks from legitimate work loads.

Preventing Physical Proximity. The underlying assumption
of defenses based on preventing physical proximity (D4) is that
Rowhammer attacks need to flip bits in page tables or other
kernel pages to take over the system. A memory allocator can
prevent physical proximity of user pages and kernel pages.
G-CATT [11] is the only published defense in this class. G-
CATT isolates kernel pages from user pages by leaving a gap
in physical memory. If the isolation works, the user cannot
take over the kernel and the system anymore.

Memory Footprints. The underlying assumptions of de-
fenses based on prohibiting conspicuous memory footprints
(D5) are that Rowhammer attacks need to allocate large
amounts of memory to scan for bit flips and almost exhaust the
entire memory to surgically place a page in a specific physical
location to trigger and exploit a Rowhammer bit flip. While
the memory consumption of the attacker can already raise
suspicion, both spraying [21, 58] and grooming [61] easily
exhaust the entire memory in a way that gets the attacker
process killed by the operating system. The memory allocator
by default already avoids placing kernel pages near userspace
pages, and it only deviates from this behavior in near-out-of-
memory situations. Not deviating from the default behavior
to prevent adversarial memory exhaustion was mentioned in
Rowhammer attack papers [21, 61]. If the memory allocator
prevents adversarial memory exhaustion, an attacker cannot
force target pages to specific memory locations anymore.

IV. ATTACKER MODEL

Our attacker model makes the following fundamental as-
sumptions about the hardware, the operating system, installed
defense mechanisms, and attacker capabilities:

Hardware. The installed DRAM modules are susceptible
to Rowhammer bit flips and no dedicated hardware-based
Rowhammer defense mechanisms are in place.

Operating System. The operating system is up-to-date and
fully patched, and no known software vulnerabilities exist that
an attacker could exploit to elevate privileges.

TABLE II: How the different defense classes are bypassed.

Bypass
Defense Class St

at
ic

A
na

ly
si

s

Pe
rf

or
m

an
ce

C
ou

nt
er

s

M
em

or
y

A
cc

es
s

Pa
tte

rn

Ph
ys

ic
al

Pr
ox

im
ity

M
em

or
y

fo
ot

pr
in

t

Intel SGX
One-location hammering

Opcode flipping
Memory waylaying

Defense class defeated

Defenses. The system is protected with state-of-the-art
Rowhammer defenses. Specifically, the system deploys at
least one defense from each defense class, including static
analysis [32], hardware performance counters [6, 15, 22, 25,
50, 68], memory access pattern analysis [6], physical prox-
imity prevention [11], and prevention of near-out-of-memory
situations [21, 61].

Attacker Capabilities. We assume that an attacker can
start an arbitrary unprivileged user program. Furthermore, we
assume that the attacker can launch an SGX enclave, which
is also unprivileged.

V. HIGH-LEVEL VIEW OF THE ATTACKS

In this section, we provide a high-level overview of the
attack primitives we develop for our privilege-escalation attack
in native environments and our denial-of-service attack in
cloud environments, despite the presence of defenses from all
defense classes from Section IV. Table II summarizes how we
defeat every single defense class.

To defeat defense class D1 (static analysis), we run our
attack inside an SGX enclave. Code within enclaves cannot
be read or inspected, as the processor prevents all accesses to
the enclave memory. Hence, by encrypting the code and only
decrypting it after the enclave is launched, a developer can
hide arbitrary code within SGX enclaves. As a consequence,
MASCAT [32] is incapable of detecting any microarchitectural
or Rowhammer attack we perform inside the enclave. Further-
more, the instruction stream cannot be searched for clflush
instructions [25].

Defense class D2 (performance counters) is also defeated
by running the attack inside an SGX enclave because the
processor does not include SGX activity in process-specific
performance counters for security reasons [28]. Confirming
this, Schwarz et al. [57] observed that performance counters
are not influenced by cache attacks running inside SGX
enclaves. Hence, performance counters cannot be used to
detect our attack.

One-location Hammering. To defeat defense class
D3 (memory access patterns), we introduce a new attack
primitive, one-location hammering. As described in Sec-
tion II-A, double-sided hammering and single-sided hammer-
ing have distinguishably abnormal memory access patterns.
One-location hammering is based on a previously unknown
Rowhammer effect. With one-location hammering, the attacker

only runs a Flush+Reload loop on a single memory address at
the maximum frequency. This virtually keeps the DRAM bank
permanently open. We observed that one-location hammering
drains enough charge from the DRAM cells to induce bit
flips. As one-location hammering does not perform alternating
accesses to different rows in the same bank, D3 defenses, such
as ANVIL [6] do not detect the ongoing attack. We describe
one-location hammering in detail in Section VII.

Opcode Flipping. To defeat defense class D4 (physical
memory isolation), we introduce another new attack primitive,
opcode flipping. All previous Rowhammer privilege-escalation
attacks induced bit flips in carefully crafted page tables. If
the page table modification is successful, the attacker gains
unrestricted read and write access to the physical memory,
which is equivalent to having kernel privileges [21, 58, 61, 63].

With opcode flipping, we propose a novel way of exploiting
bit flips. In the x86 instruction set, bit flips in opcodes yield
different but, in most cases, valid opcodes. We show that with
only a single targeted bit flip in an instruction, we can alter a
(setuid) binary, e.g., sudo, to provide an unprivileged process
with root privileges. As this is a bit flip in a user page, it
breaks the underlying assumption of defense class D4, i.e.,
G-CATT [11].

Previous attacks on unprivileged code [58] (cf. Section II-A
for a detailed discussion) bypassed sandbox code sanitization
by flipping bits in a bitmask used in a logical and in
attacker-sprayed code. In contrast to their work, we identify
potential target bit flips in any opcode in a shared binary or
library, modifying opcodes and the instruction stream. Conse-
quently, we illegitimately obtain root privileges by bypassing
authentication checks. We explain opcode flipping in detail in
Section VI.

Memory Waylaying. To defeat defense class D5 (memory
footprints), we introduce a novel alternative to memory spray-
ing and grooming, called memory waylaying. Rowhammer
attacks modify pages in a predictable way by placing them
in physical memory locations where a known bit flips occur.
There are two techniques to achieve this: With spraying the
attacker fills the entire memory with copies of the generated
data structure; with grooming the attacker allocates the data
structure to exploit in the exactly right moment. Both methods
require exhausting the entire memory and are easily detectable
by monitoring memory consumption. Memory waylaying per-
forms replacement-aware page cache eviction, using only
page cache pages. These pages are not visible in the system
memory utilization as they can be evicted any time and hence,
are considered as available memory. Consequently, memory
waylaying never causes the system to run out of memory.

Our observations show that page cache pages, after being
discarded from DRAM, are reloaded from the disk to a new
random physical location. Through continuous eviction, the
page is eventually placed on a vulnerable physical location.
Memory waylaying leverages the prefetch side-channel to
detect when data in virtual memory is placed on a specific
physical location. By doing so, memory waylaying consumes
a negligible amount of processor time and memory while

waiting for the target page to be loaded to the target physical
location. Hence, it is difficult to detect. Once the data is located
at the desired position, the attacker hits it with the Rowhammer
bit flip and exploits the modified binary to gain root privileges.
We describe memory waylaying in detail in Section VIII.

VI. OPCODE FLIPPING

In this section, we describe opcode flipping, a generic tech-
nique for exploiting bit flips in cached copies of binary files.
All previous generic Rowhammer privilege-escalation attacks
(i.e., obtaining root privileges) flip bits in the page number
field of attacker-generated page tables, to change the page that
the page table entry references. Seaborn and Dullien [58] (cf.
Section II-A for a detailed discussion) bypassed sandbox code
sanitization by flipping bits in a bitmask used in a logical and
in attacker-sprayed code. In contrast to their work, we identify
potential target bit flips in any opcode in a shared binary
or library, modifying opcodes and the instruction stream. In
contrast to previous Rowhammer attacks based on memory
spraying, the binary pages we attack cannot be sprayed and
only exist a single time in the entire memory.

Opcode flipping exploits the fact that bit flips in opcodes
can yield different, yet valid opcodes. These opcodes are often
very similar to the original opcode but have different, possibly
inverted, semantics. One prerequisite of opcode flipping is
the ability to flip a bit of a target binary page with surgical
precision. For now, we assume that the attacker can cause such
a precise bit flip in a file and discuss the effect of such bit
flips, before we show in Section VIII how a file can placed in
memory accordingly.

Opcode Flipping Case Study. To illustrate opcode flipping
we consider the example of a single bit flip in the x86 opcode
JE = 0x74 (jump if equal). A single bit flip in this opcode
can yield the opcodes JNE = 0x75 (jump if not equal),
JBE = 0x76 (jump if below or equal), JO = 0x70 (jump
if overflow), JL = 0x7C (jump if lower), PUSHQ = 0x54
(push quad word), XORB = 0x34 (xor byte), HLT = 0xF4
(halt), and the prefix 0x64. There are only 21 byte sequences
following the prefix 0x64 which are illegal opcodes. The other
234 lead to valid opcodes.

Similarly, flips in TEST instructions preceding a conditional
jump have the same effect. For example, with a single bit flip,
the instruction TEST EAX,EAX, which sets the zero flag if
EAX is zero, can be transformed to XCHG EAX,EAX, which
never modifies the zero flag. Tests and conditional jumps are
used in virtually all computer programs, and they control the
decision logic of the programs. Therefore, we focus on flips
in these instructions. As we show, bit flips in such instructions
are sufficient to achieve our goals.

Exploitable Opcodes in Real-World Binaries. To exploit
opcode flipping for privilege escalation, we target userspace
applications with the setuid bit set, which are run as root.
On Ubuntu 17.04, there are 16 setuid binaries owned
by root, all being potential targets for privilege escalation
using a bit flip. We manually analyzed one of the most

· · ·

· · ·

expect flip
hammer

expect flip
hammer

expect flip

(a) Double-sided

· · ·

· · ·

hammer

hammer

expect flip
hammer

expect flip

(b) Single-sided

· · ·

· · ·
expect flip
expect flip
expect flip
hammer

expect flip
expect flip
expect flip

(c) One-location

Fig. 1: In contrast to double-sided and single-sided ham-
mering, one-location hammering does not hammer multiple
memory locations but only one.

prominent targets for privilege escalation, the sudo binary
and sudoers.so shared library (henceforth sudo binary).

We identified two regions in the sudo binary in which a
bit flip can be exploited. First, the check whether the user is
allowed to use sudo, i.e., if the user is in the sudoers file.
Second, the check whether the entered password is correct. In
this work, we focus on the latter.

We located 29 different offsets in the binary where a bit
flip breaks the password verification logic. All identified bit
flips affect the test or the conditional jump of the password-
verification location. Successful attacks on the conditional
jump change the condition so that it treats an incorrect pass-
word as if it was correct. Attacks on the test instruction result
in different operations which ensure that the zero flag is clear,
either by clearing it, e.g., ADD AL,0xC0, or by maintaining
the previous, clear, value. We provide a list with offsets and
their effect on the opcode at this position, in Appendix A.

As shown in the following section, bit flip positions in
memory are uniformly distributed, allowing exploitation of any
of the 29 offsets in the sudo binary to gain root privileges.

VII. ONE-LOCATION ROWHAMMER

In this section, we describe the hammering technique we
use to scan the system memory for bit flips. We assume that
the attacker already knows exploitable bit offsets in binaries
and only searches for memory locations where these bit
offsets can be flipped through Rowhammer. We propose one-
location Rowhammer as a novel alternative technique based
on previously unknown Rowhammer effects. The scanning
is performed from within the enclave and hence, cannot be
observed through performance counters, source-code analysis
or binary analysis.

Previous work described two different hammering tech-
niques, double-sided hammering, and single-sided hammering,
as described in more detail in Section II-A. Figure 1 illustrates
and compares the different hammering techniques with the
new one-location hammering we propose.

One-location hammering truly hammers only one memory
location, i.e., the attacker does not directly induce row conflicts
but only keeps one row permanently open. The core of one-
location hammering is a Flush+Reload loop hammering a
single randomly chosen address, as illustrated in Figure 1.
One-location hammering the assumptions of defense class D3.

(a) Double-sided (b) Single-sided (c) One-location

Fig. 2: Flippable bit offsets over 4 kB-aligned memory regions
for different hammering techniques. Bit flips from 0 to 1 (blue)
and bit flips from 1 to 0 (red) may occur at any bit offset.

Both, one-location hammering and single-sided hammering are
oblivious to virtual-to-physical address mappings. Hence, we
can apply both hammering techniques in environments where
physical address mappings are not available.

We studied the distribution of bit flips over 4 kB-aligned
memory regions, i.e., pages, as this alignment can be obtained
through our memory waylaying technique described in Sec-
tion VIII. We performed our analysis on an Intel Skylake
i7-6700K with two 8GB Crucial DDR4-2133 DIMMs. We
hammered random locations with the three techniques, in
separate runs. Each test ran for 8 hours and scanned for bit flips
after each hammering attempt. Figure 2 shows the distribution
of bit flip offsets over 4 kB-aligned memory regions for
double-sided hammering, single-sided hammering, and one-
location hammering. We observe that 25 223 out of 32 768 bit
offsets (77.0%) can be flipped using double-sided hammering
on at least one 4 kB-offset. 51.7% of the bit flips were from
0 to 1.

Single-sided hammering does not induce more bit flips than
double-sided hammering. However, regarding bit offsets, we
observe an even slightly more uniform distribution for single-
sided hammering, with 25 722 bit offsets (78.5%). 54.1% of
the bit flips were from 0 to 1.

One-location hammering only flipped 11 969 out of 32 768
bit offsets (36.5%) on at least one 4 kB-offset. 51.6% of the
bit flips were from 0 to 1. This is worse than double-sided
hammering and single-sided hammering, which is likely the
reason why this effect was not reported before. Still, our results
show for the first time, that one-location hammering drains
sufficient charge from the DRAM cells to induce bit flips.

We validated our results by reproducing them in a short
series of tests on an Intel Haswell i7-4790 with two Kingston
DDR3-1600 DIMMs, and an Intel i5-3230M with two Sam-
sung DDR3-1600 DIMMs. On both systems, we observe bit
flips for all hammering techniques, including one-location
hammering. Bit flips from 0 to 1 and from 1 to 0 have
approximately the same probability on all three systems.

Our data shows that the bit flips over pages generally follow
a uniform distribution if a significant amount of memory is
tested. As our attacker aims at finding bit flips for specific
offsets on 4 kB pages, the runtime of the bit flip templating
phase depends on the number of exploitable bit flip offsets.

In case of the 29 bit offsets we found in sudo, the expected
runtime on our Skylake system is less than 17 minutes per
target bit flip for double-sided hammering, and less than
19 minutes for single-sided hammering. With one-location
hammering the expected runtime increases to 56 minutes until
a target bit flip is found. Hence, one-location hammering is
3.3 times slower in finding the target bit flip than comparable
hammering methods. If evasion of defense class D3 is a goal,
a slow-down factor of 3.3 is practical.

Deciding to run the stealthy templating longer than nec-
essary, i.e., searching for more than one bit flip, reduces the
runtime of the waylaying phase (cf. Section VIII) significantly,
as the attacker learns more addresses suitable for the attack.

The templating only keeps the CPU core of the enclave
busy but causes no other system utilization, i.e., it does not
exhaust memory, as we rely on the memory allocation of our
waylaying technique, that we present in the following section.

VIII. MEMORY WAYLAYING

The attacker knows which bit offsets in pages of binaries to
target to obtain root privileges, and how to hammer physical
memory locations to obtain a bit flip at the right bit offset. The
remaining problem is the inherent challenge of Rowhammer:
Placing the target page at a physical location where the
required bit flip can be induced. The known approaches to
solve this challenge are spraying, i.e., filling the entire memory
with copies of the page, or grooming, i.e., allocating the target
page in exactly the right moment [67]. However, the page
cache keeps every binary page only once in memory and
prioritizes keeping binary pages in memory upon eviction.
Hence, spraying is not applicable in our attack and grooming
would require out-of-memory situations to force eviction of
the binary page. In this section, we present memory waylay-
ing, a reliable approach to solving the challenge of memory
placement. It is a generic stealthy alternative to spraying and
grooming, relying on a prediction oracle to determine whether
a target page is at the right physical memory location.

In Section VIII-A, we show how the prefetch side-channel
attack [20] can be leveraged as an oracle. In Section VIII-B,
we present a technique to evict a target page from the page
cache, forcing them to be relocated at the next access. Finally,
Section VIII-C describes how the prefetch translation oracle
and the page cache eviction are combined to the stealthy
memory waylaying. We also present a fast variant, called
memory chasing, which sacrifices stealth for speed, with no
sacrifice of reliability.

A. Prefetch-based Prediction Oracle

In our memory waylaying attack, the attacker monitors page
placement to detect mapping of one of the offsets in binaries
and shared libraries to one of the target memory locations. We
use the prefetch address-translation oracle [20] to perform this
monitoring. The oracle exploits the direct-physical mapping in
the Linux kernelspace. The prefetch address-translation oracle
provides an attacker with the information whether two virtual

addresses map to the same physical address, even in the
presence of address-space layout randomization.

The address-translation oracle consists of two steps, a se-
quence of prefetch instructions and a Flush+Reload attack, to
measure the effect of the prefetch. While the attack is prone to
false negatives due to ignored prefetch instructions, the Flush+
Reload attack at its core has virtually no false positives [66],
i.e., there is no cache hit if the address was not actually
cached. While both steps can generally be executed in SGX
enclaves, performing a Flush+Reload attack requires highly
accurate timing measurements. On SGX2, rdtsc is available
within enclaves. On SGX1, Schwarz et al. [57] demonstrated
that accurate timing can be obtained by using counting threads
and Wang et al. [62] mirrored rdtsc into the enclave. Our
experiments with both approaches show that we can use either
to obtain sufficiently accurate timing inside enclaves.

The address-translation oracle is first used in our attack
to determine the offsets in the direct-physical map which
have exploitable bit flips. It is then used a second time, to
continuously monitor the set of target addresses during the
memory waylaying. When an address match is detected, the
next step of the attack is triggered, i.e., hitting the target page
with Rowhammer.

Our prefetch address-translation oracle, which we optimized
for stability, experienced no false positives over a time frame
of 3737 seconds and a true positive every 4.5 seconds, i.e.,
the expected value for the true positive rate is 50% when
measuring for 4.5 seconds. When optimized for performance
we can achieve the same performance as Gruss et al. [20], i.e.,
an expected measurement time of less than 50 milliseconds per
address without false positives, but with a higher false negative
rate. The search for the physical addresses is combined into
one prefetch side-channel attack, i.e., one prefetch operation
and as many Flush+Reload loops as page translations the
attacker wants to find. Hence, the runtime does not increase
significantly with the number of addresses, but only linearly
in the amount of system memory.

B. Page Cache Eviction

Files are cached page-wise in the file page cache upon the
first access to the corresponding page. Any subsequent access
to a page of a file is directly served from the page cache.
Thus, one prerequisite for memory waylaying is a technique
to deterministically evict a page of a file from the page cache.
Eviction ensures that any subsequent access to the file cannot
be served from the page cache anymore, and the file is mapped
to a new physical location.

Any unprivileged process could evict data from the page
cache by simply allocating a large amount of memory, such
that page cache pages must be evicted. This is similar to
the memory exhaustion techniques in previous Rowhammer
attacks and risks system crashes due to out of memory
situations [21, 58, 61]. We examined the behavior of the page
cache replacement algorithm to find a more reliable way to
trigger eviction. While Linux provides privileged interfaces
to do so, we need an approach which works without any

40 50 60 70 80 90 100

200

400

600

O
O

M

Memory Usage [%]

N
um

be
r

of
ca

se
s

Eviction
Exhaustion

Before Attack

Fig. 3: Our replacement-aware page cache eviction only leads
to negligible memory increase, whereas existing techniques
are close to an out-of-memory situation.

privileges and from within enclaves, i.e., only with regular
memory accesses.

A fundamental observation we made is that the replace-
ment algorithm of the page cache prioritizes eviction of non-
executable pages over executable pages. However, it does evict
executable pages when filling the page cache with read-only
executable pages. This forms a basic primitive that allows us
to efficiently and reliably evict a selected page from the page
cache. Because the page cache only uses otherwise unused
memory pages, the technique does not result in memory
pressure and avoids the unresponsiveness and out-of-memory
situations that memory exhaustion causes [21, 58, 61].

For both approaches, memory exhaustion and replacement-
aware page cache eviction, the amount of data which has to
be accessed is at most the total amount of main memory in
the system. To evaluate how much memory has to be allocated
for the eviction to be successful, we use the Linux mincore
function. The mincore function tells whether a given page is
in the page cache. An attacker could also use this function to
optimize the page cache eviction during an attack, i.e., abort
the replacement-aware page cache eviction as soon as the page
to be evicted is not in the page cache anymore. However, this is
a trade-off between stealth and performance, as the operating
system can monitor calls to the mincore function.

We evaluated our replacement-aware page cache eviction
on an Intel Core i5-6200U with 12GB of main memory. For
the experiment, we kept the system at an typical workload,
namely a browser, a mail client, and a music player were
running during the experiment. Figure 3 compares traditional
memory exhaustion with our replacement-aware page cache
eviction to evict a specific page (in our experiment a page
of the sudo binary) from the page cache. Our replacement-
aware page cache eviction only incurs a slight increase of used
memory, whereas the exhaustion-based technique is close to
an out-of-memory situation. In 0.78% of our exhaustion tests,
the test program was even terminated by the operating system
due to excessive memory usage. In contrast, our replacement-
aware page cache eviction never leads to an out-of-memory
situation. On average, for our replacement-aware page cache
eviction, it was sufficient to access 5544MB of data to evict
the target page of the sudo binary from the page cache. The
replacement-aware page cache eviction takes on average 2.68
seconds. For higher workloads, an attacker has to access even

B
X

(a) Start
X

(b) Our Eviction

B

X

(c) Access Binary
B

X

(d) Repeat: Evict
+ Access

B

X

(e) Repeat: Evict
+ Access

BX

(f) Stop if target
reached

Fig. 4: Memory waylaying. In step (a) some pages are free
(). Our eviction (b) allocates all free pages for the page
cache (), but leaves occupied (non page cache) pages (B)
untouched. Repeating the eviction, the target page B () is
relocated, but the amount of occupied memory remains the
same. Eventually, B is placed on the target physical location
X (X) as illustrated (f).

less data to evict a specific page from the page cache, as the
size of the page cache decreases with the memory usage of
active applications.

C. Positioning Memory Pages

We combine the prefetch translation oracle (cf. Sec-
tion VIII-A) and the replacement-aware page cache eviction
(cf. Section VIII-B) to maneuver a target page on one of
the physical locations with a bit flip (cf. Section VII). As an
extension to memory waylaying, which is slow but stealthy,
we also propose memory chasing, a faster non-stealthy variant.

Both memory waylaying and memory chasing, leverage
the prefetch translation oracle to test whether our exploitable
page is at the correct (i.e., vulnerable) physical page. As the
physical page usually does not change often (i.e., only if there
is high memory pressure or the system is rebooted), memory
waylaying periodically evicts the page cache. On a subsequent
access to the target page, the access cannot be served from the
page cache anymore, and a new physical page is allocated and
mapped. This procedure is illustrated in Figure 4.

We evaluate the distribution of physical page numbers used
for a specific binary page on one of our test systems, an
Intel Core i5 with 12GB of main memory. We repeated the
memory waylaying process 57 000 times, i.e., the binary page
was relocated 57 000 times. Out of these 57 000 relocations,
we found 46 720 unique physical page numbers, i.e., the
probability of maneuvering the binary to a physical location
where it was already is only 18% after 57 000 tries. Figure 5
visualizes the distribution of the 57 000 relocations in physical
memory. We observe that even the small number of relocations
we tested (i.e., 1.8% of all pages), most of the physical
memory is covered, with the exception of occupied memory
regions. Thus, we conclude that eventually the target binary

Fig. 5: Distribution of placements of a page in the physical
memory. Each square represents 4MB in the 12GB address
space of our test system. Hatched (red) areas are unavailable
to the system (e.g., graphics memory, memory mapped I/O).
The darker (blue) an area, the more physical pages were in
this area. Even the small number of pages tested covers most
of the physical memory.

page is placed at a physical memory location the intended bit
flip can be induced.

The advantage of memory waylaying over conventional
techniques, such as grooming or spraying, is that it is stealthy,
as it does not exhaust the memory. The operating system
page cache is designed to occupy any unused page in the
system. Most pages are rarely accessed, but it is still more
efficient to keep them in memory than to reload them from
the disk. Memory waylaying exploits this design, and as a
consequence, it has no impact on memory utilization and
only negligible impact on the overall system performance,
as the page cache simply keeps a different set of pages in
the otherwise unused memory. In Section IX-B, we detail the
runtime of the waylaying phase in a practical example.

The disadvantage of memory waylaying is that the runtime
can vary widely, from a few hours up to a few days, until the
target page is placed on the correct physical location. As a
faster solution, we propose memory chasing, an adaption of
memory waylaying which sacrifices stealth for speed. Instead
of waiting for the target page to be placed on a different
physical page, we actively “chase” the binary in physical
memory until it is at the correct physical page. Memory
chasing runs outside of the enclave as it has a stronger
interaction with userspace library functions. To change the
physical page of a target binary, memory chasing exploits the
copy-on-write effect of fork as follows:
1) mmap the binary as private and writable.
2) Fork the current process.
3) In the child process, write to the mapped binary. This

ensures that the page is copied to a new physical page.
4) Kill the parent process to release the old physical page.
5) Repeat until the page is at the intended physical location

(check using the prefetch translation oracle)

Although the binary content is now at the correct physical
location, the page cache still holds the first version of the
binary page, as the current page is dirty (i.e., modified). Thus,
we have to trick the kernel into replacing the old binary page
with the current one. We do this by evicting the page cache as
described in Section VIII-B. This removes the old (cached)
binary page from the page cache. After the page cache is
evicted, we unmap the current binary page and immediately
map it again, however, this time with read-only and execute
permissions. This ensures that the freed physical page is used
to cache the binary in the page cache.

Memory chasing is considerably faster than memory way-
laying, as the page cache has to be evicted only once. Moving
the physical page with memory chasing takes on average only
36.7 µs, whereas memory waylaying requires 2.68 s. However,
both techniques have the advantage of not exhausting the
memory in contrast to memory spraying and grooming. One
disadvantage of memory chasing is the large number of fork
system calls, occupying one CPU core. Therefore, depending
on how stealthy the attack must be, the attacker chooses which
of the two primitives to use for reliable page cache eviction.
In Section IX-B, we detail the runtime of memory chasing in
a practical example.

IX. EVALUATION OF ATTACKS IN NATIVE AND CLOUD
ENVIRONMENTS

In this section, we summarize our attacks and evaluate them
in practical scenarios. We first consider a cloud scenario with
a simple attack, where an attacker is able to run our attack in
virtual machines on multiple cloud servers. We then consider a
local scenario with our full attack, where an attacker is able to
run our attack on personal computers and performs a privilege-
escalation attack. We detail the procedural steps of the attacks
as well as the corresponding runtime.

A. Abusing SGX for “distributed” Denial-of-Service Attacks
in the Cloud

Cloud servers are typically less susceptible to Rowhammer
bit flips due to the presence of ECC, double refresh rates,
and slower DRAM modules [51]. In the cloud scenario, the
attacker uses our attack to identify a set of vulnerable servers
and take the entire set of servers down in a coordinated and
distributed attack, i.e., a denial-of-service attack. In this attack,
we do not aim for privilege escalation and hence, neither
perform opcode flipping nor memory waylaying. The attacker
runs an unprivileged SGX enclave to evade defense classes
D1 and D2.

If, as discussed in Section II-D, an attacker induces bit flips
in the encrypted memory area (EPC) of SGX, the CPU locks
the memory controller (potentially incurring data corruption),
causing the system to halt until it is rebooted manually.
It is important to note that only a tiny fraction of 4 kB
pages are adjacent to the 128MB EPC memory area. For
instance, on a system with 16GB dual-channel dual-rank
DDR4 memory, only 256 pages (0.006% of all pages) are in
an adjacent DRAM row. As different allocation mechanisms

are used to allocate EPC pages and normal world pages, the
attacker cannot accidentally hammer EPC addresses. Hence,
it is extremely unlikely to accidentally flip a bit in the EPC
memory region.

Many cloud providers use KVM [24] or Xen [7] as a
hypervisor to run multiple virtual machines of different tenants
in parallel on the same physical hardware. To expose SGX fea-
tures to virtual machines, Intel published the necessary kernel
patches [29, 30, 31]. Recently, Microsoft [45] introduced Azure
confidential computing that enables developers to use SGX in
their cloud.

Our “distributed” denial-of-service attack consists of two
phases, seek and destroy:
• Seek. The attacker launches the attack enclave on many

hosts in the cloud (i.e., “distributed”), and templates the
DRAM for possible bit flips. The runtime of this phase is
in the range of multiple hours. As we have shown in Sec-
tion VII, the position of bit flips is uniformly distributed.
Thus, if an attacker finds any bit flip while templating, the
DRAM very likely is also vulnerable to bit flips in the EPC
region used by SGX.

• Destroy. The attacker shuts down every vulnerable machine
found in phase 1, by simultaneously triggering a bit flip in
the EPC memory area. The runtime of this phase is in the
range of seconds.
Besides ethical considerations on performing this exper-

iment on a public cloud provider, we also found that no
public cloud provider offers SGX support. Microsoft’s Azure
confidential computing [45] can only be used as an early access
program, that we have not been granted access to. Instead, we
performed the first part of our experiment on a dual CPU
server system with two Intel Haswell-EP Xeon E5-2630 v3,
a setup commonly found in public clouds. We equipped the
system with two Crucial DDR4-2133 DIMMs known to be
susceptible to Rowhammer bit flips. Our experiments showed
that due to the significantly lower clock frequency (60–76%
of the clock frequency of an Intel Skylake i7-6700K) and
the by-default doubled refresh rate, bit flips are much rarer.
Specifically, we observed only 3 bit flips in an 8 hour test.
However, this is sufficient for our denial-of-service attack.

In the second phase, our Rowhammer enclave starts to
simultaneously hammer DRAM rows in the EPC on all
hosts. By triggering a bit flip within this memory region, the
machine locks the memory controller (potentially incurring
data corruption) and causes the system to halt until reboot.

As our Intel Haswell-EP system does not support Intel
SGX, we performed the second part of our practical analysis
on an Intel Skylake i7-6700K. We verified that we are able
to reproducibly crash the system within 10 seconds when
hammering DRAM rows used by the EPC, as Intel SGX
locked down the memory controller, halting the system and
forcing us to power off the system manually. We observed
that occasionally, after powering on the system again, the
system did not boot beyond the BIOS for several minutes.
After powering the system off and on again another time, the
system regularly booted again.

Our results show that SGX introduces a significant security
risk for cloud providers, allowing an attacker to cause hard-
to-trace denial-of-service attacks and coordinated simultane-
ous take-down of multiple cloud servers, e.g., in the Azure
confidential computing cloud [45]. As the attack hurts the
availability and reliability of the cloud provider, it is especially
interesting for parties with conflicting economic interests.

While the same attack could also be applied to a large num-
ber of personal computers, it is unclear how an attacker would
profit from denial-of-service attacks on personal computers,
especially in the face of the full privilege-escalation attack we
detail in the next subsection.

B. Abusing SGX to Hide Privilege-Escalation Attacks

Personal computers are more susceptible to Rowhammer bit
flips, as they usually are not equipped with ECC-RAM. In this
scenario, the attacker uses our full attack for privilege escala-
tion from a regular unprivileged process to root privileges. The
crucial building blocks of this attack are opcode flipping and
memory waylaying. The attacker runs an unprivileged SGX
enclave to evade defense classes D1 and D2.

In our example attack, we apply opcode flipping as de-
scribed in Section VI to exploit bit flips in opcodes in the
sudo binary of an up-to-date Ubuntu distribution. Bit flips
at some offsets in the binary (Section VI) cause a skipping
of authentication checks and, thus, provide us with root
privileges.

The local attack requires two preparation steps:
• Offline Preparation. The attacker determines which bit flip

offsets in standard system executable binaries and shared
libraries are exploitable. This step is repeated for a large
number of binaries and shared libraries of different distri-
butions and versions. The result of the offline preparation
is a database of files, versions, and bit flip offsets (cf.
Section VI). In this phase, we identified 29 exploitable bit
offsets in sudo.

• Online Preparation. The attacker verifies that the binary
and library versions on the target systems are in the database.
This is very likely the case if the victim uses a default
installation of a popular Linux distribution, e.g., Ubuntu,
as all binaries and libraries are pre-compiled and hence,
identical on virtually every installation.

After the preparation steps are successfully completed, the
attacker continues with the main attack. The main attack
consists of four phases:
• Templating phase. Our Rowhammer enclave templates

the memory for bit flips. This is done via single-sided
hammering or one-location hammering (cf. Section VII),
which both are oblivious to physical addresses and hence,
perfectly suited to be run in our Rowhammer enclave. To
defeat defense class D3, the attacker can use one-location
hammering. The memory is allocated via memory-mapped
files (cf. Section VIII), causing no significant increase in
the resident memory and, thus, avoiding out-of-memory
situations.

TABLE III: Optimal parameters and runtime of the attack.

Method Bitflips Templating Waylaying Total

Double-sided, waylaying 91 26.1h 69.4h 95.5h
Single-sided, waylaying 87 27.5h 70.6h 98.1h
One-location, waylaying 50 47.3h 90.5h 137.8h

Double-sided, chasing 1 0.7h 43.7h 44.4h
Single-sided, chasing 1 0.7h 43.7h 44.4h
One-location, chasing 1 1.3h 44.0h 45.4h

The runtime of the templating phase and the waylaying
phase pose an optimization problem (see Appendix B).
Table III shows the optimal solution for our scenario, e.g.,
the runtime with one-location hammering is 47.3 hours
if followed by waylaying, and 1.3 hours if followed by
memory chasing. Interruptions during this time frame are no
problem, as the attacker tests independent memory locations
and does not lose data over interruptions. During the tem-
plating, the enclave occupies one CPU core, which is visible
to the operating system but which could also be explained
by completely benign enclave operations. The result of the
templating phase is a list of physical pages with bit flips
matching those from the preparation phase.

• Waylaying phase. Our Rowhammer enclave uses a side
channel to wait until one of the vulnerable target binary or
library pages is placed on one of the exploitable memory
locations (cf. Section VIII). The prefetch-based prediction
oracle tells us when the page has been loaded at the correct
position. Next, then we flip the bit in the opcode using one-
location hammering in the hammering phase.
The runtime of the waylaying phase depends on the number
of bit flips found in the templating phase. Table III shows the
optimal solution for our scenario, e.g., the runtime with one-
location hammering is 90.5 hours for memory waylaying
and 44.0 hours for memory chasing. The result of the
waylaying phase is that a target binary page is placed on
the right physical page to trigger a predictable bit flip.

• Hammering phase. The hammering phase only takes a few
milliseconds, as it only induces the predictable bit flip on
the target page using Rowhammer. The attacker can verify
whether a bit was flipped by reading the content of the
binary page. Thus, the result of the hammering phase is an
unauthorized modification of the target binary, i.e., in our
case a malicious sudo binary.

• Exploitation phase. As the binary page in memory now
contains the modified opcodes, the privilege check in the
target binary, i.e., sudo, is circumvented. Hence, the at-
tacker simply runs the attacked binary and, thus, obtains
root privileges. Consequently, the exploitation phase also
has a negligible runtime.

We performed all attack steps on an i7-6700K, showing that
the attack can be mounted in practice. Furthermore, we vali-
dated the templating on two other systems, an i5-3230M with
Samsung DDR3-1600 memory, and an i7-4790 with Kingston
DDR3-1600 memory. We also validated the waylaying phase
by running it for several days as a background process on
a second machine (an i5-6200U), confirming that the user

does not notice any attack activity and that it does not cause
any system crashes. To eliminate traces or avoid potential
instabilities due to the binary modifications, an attacker can
restore the unmodified binary page by simply evicting the
page cache once more. Upon the next access, the unmodified
version is reloaded from the disk.

Our attack shows that existing countermeasures for com-
modity systems are incomplete and fundamental assumptions
need to be refined to design effective countermeasures.

X. DISCUSSION

In this section, we discuss limitations of our approach and
additional observations we made while conducting our study.

A. Limitations

One limitation of our work is that an attacker in the native
attack scenario likely needs to get a Rowhammer enclave
signed by a signing entity, e.g., Intel or a BIOS vendor, to
be able to launch the enclave. While this sounds like a solid
solution to prevent Rowhammer attacks through enclaves in
practice, investigations on a very similar setting show that
this is not the case [14]. It is very well possible to slip
malware into app stores [14]. Furthermore, most works on
applications of SGX suggest that it can be used to keep
the code and data secret from any third party [5, 43, 56].
Especially for secure cloud computation it is not plausible
to run only signed enclaves, i.e., a cloud provider will run
non-signed user enclaves. This would allow an attacker to run
our attack as well. Consequently, a different solution must be
found to prevent Rowhammer attacks through SGX enclaves.

Although far more stealthy than spraying and grooming,
memory waylaying is still observable by the operating system.
The operating system could prevent allocating too many page
cache pages in a single process. However, high memory
requirements could also be perfectly reasonable, e.g., trusted
video processing [41], operations on large encrypted database
files [13, 36, 49, 56]. Hence, it can be doubted that memory
allocation alone already gives away that an attack is ongoing.

B. Rowhammer mitigations in hardware

The results of this paper clearly show that countermeasures
solely implemented in software trying to mitigate Rowhammer
attacks are insufficient. However, future Rowhammer defenses
should also be designed with related fault attacks in mind [35,
40]. We now discuss proposed and existing countermeasures
implemented that require hardware modifications.

ECC RAM can detect and correct 1-bit errors and, thus,
deal with single bit flips caused by the Rowhammer attack.
Furthermore, IBM’s Chipkill error correction [27] allows to
successfully recover from 3-bit errors. However, uncorrectable
multi-bit flips can be exploitable [2, 3, 42] or can result in a
denial-of-service attack similar as described in Section IX-A
depending on how the operating system responds to the error.
While only modern AMD Ryzen processors support ECC
RAM in consumer hardware, Intel restricts its support to server
CPUs, thus, making it unavailable in commodity systems.

While the LPDDR4 [33] implements TRR and MAC,
van der Veen [60] still reported bit flips on a Google Pixel
phone with 4GB LPDDR4 memory. Doubling the refresh rate
has been shown to be insufficient [6, 38] and a further increase
would incur a too high performance penalty [38].

Meaney et al. [44] introduced a redundant array of indepen-
dent memory (RAIM) system as a feature of IBM’s zEnterprise
servers, which is basically the memory-equivalent for RAID
systems for hard disks. An attacker would need to induce
multiple bit flips in different rows of different modules to
induce an uncorrectable error, making Rowhammer attacks
infeasible.

Kim et al. [38] and Kim et al. [37] proposed to eliminate
bit flips in hardware by probabilistically opening adjacent
or non-adjacent rows, whenever a row is opened or closed.
As an ongoing Rowhammer attack would open and close a
certain row repeatedly, the vulnerable adjacent rows would be
refreshed before bit flips occur. We consider their approaches
as a possible solutions to mitigate Rowhammer attacks in the
future.

C. Design of SGX

Intel SGX aims at protecting code from untrusted third
parties. Indeed, we see that it perfectly hides our attack
from different defense mechanisms. While this is intentional
behavior and shows that SGX works, the question arises
how to cope with harmful code within SGX enclaves, which
eventually will happen in the wild.

A more discerning problem of SGX is that it halts the
entire system, e.g., a cloud system. This is a powerful tool for
attackers regardless of whether they run in the normal world
or within an SGX enclave to take down entire clouds, possibly
in a coordinated and distributed way. Hence, this behavior of
SGX poses a security risk. Instead of halting the system, it
would be less dangerous for the provider to only stop the
running enclaves and return corresponding error codes to the
host application.

XI. CONCLUSION

In this paper, we showed that even a combination of all
state-of-the-art Rowhammer defenses does not prevent Row-
hammer attacks. Our novel attack and exploitation primitives
systematically undermine the assumptions of all defenses.
With one-location hammering, we showed that previous as-
sumptions on how the Rowhammer bug can be triggered are
invalid and keeping only one DRAM row constantly open is
sufficient to induce bit flips. With a slow-down factor of only
3.3, it is still on par with previous (now mitigated) techniques.
With opcode flipping, we bypass all memory layout-based
defenses by flipping bits in a predictable and targeted way
in the userspace sudo binary. We present 29 bit offsets, each
allowing an attacker to obtain root privileges in practice. With
memory waylaying, we present a reliable technique to replace
conspicuous and unstable memory spraying and grooming
techniques. Coaxing the operating system into relocating any
binary page takes 2.68 s with our stealth-optimized variant,

and only 36.7 µs with our speed-optimized variant. Finally,
we leveraged Intel SGX to hide the full privilege-escalation
attack, making any inspection or detection of the attack infea-
sible. Consequently, our attack evades all previously proposed
countermeasures for commodity systems.

ACKNOWLEDGMENTS

We would like to thank Thomas Schuster for help with some
experiments.

REFERENCES

[1] M. T. Aga, Z. B. Aweke, and T. Austin, “When good
protections go bad: Exploiting anti-dos measures to
accelerate rowhammer attacks,” in IEEE International
Symposium on Hardware Oriented Security and Trust
(HOST), 2017.

[2] B. Aichinger, “DDR memory errors caused by Row
Hammer,” in HPEC, 2015.

[3] ——, “Row Hammer Failures in DDR Memory,” in
memcon, 2015.

[4] I. Anati, F. McKeen, S. Gueron, H. Huang, S. Johnson,
R. Leslie-Hurd, H. Patil, C. V. Rozas, and H. Shafi, “Intel
Software Guard Extensions (Intel SGX),” 2015, Tutorial
Slides presented at ICSA.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O′Keeffe, M. L.
Stillwell et al., “Scone: Secure linux containers with intel
sgx,” in OSDI, 2016.

[6] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,
Y. Oren, and T. Austin, “Anvil: Software-based protec-
tion against next-generation rowhammer attacks,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 743–755, 2016.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the Art of Virtualization,” ACM SIGOPS Operating
Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[8] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN:
silently breaking ASLR in the cloud,” in Usenix WOOT,
2015.

[9] S. Bhattacharya and D. Mukhopadhyay, “Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Tim-
ing Analysis,” in Conference on Cryptographic Hardware
and Embedded Systems (CHES), 2016.

[10] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup
Est Machina: Memory Deduplication as an Advanced
Exploitation Vector,” in S&P, 2016.

[11] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-
R. Sadeghi, “Can’t touch this: Software-only mitigation
against rowhammer attacks targeting kernel memory,” in
USENIX Security Symposium, 2017.

[12] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A.-R. Sadeghi, “Software grand expo-
sure: Sgx cache attacks are practical,” in Usenix WOOT,
2017.

[13] H. Brekalo, R. Strackx, and F. Piessens, “Mitigating pass-
word database breaches with intel sgx,” in Proceedings

of the 1st Workshop on System Software for Trusted
Execution, 2016.

[14] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,
W. Zou, and P. Liu, “Finding unknown malice in 10
seconds: Mass vetting for new threats at the google-play
scale.” in USENIX Security Symposium, 2015.

[15] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time
detection of cache-based side-channel attacks using hard-
ware performance counters,” Cryptology ePrint Archive,
Report 2015/1034, 2015.

[16] J. Corbet, “Defending against rowhammer in the kernel,”
Oct. 2016. [Online]. Available: https://lwn.net/Articles/
704920/

[17] V. Costan and S. Devadas, “Intel sgx explained,” Cryp-
tology ePrint Archive, Report 2016/086, 2016.

[18] M. Ghasempour, M. Lujan, and J. Garside,
“ARMOR: A Run-time Memory Hot-Row Detector,”
2015. [Online]. Available: http://apt.cs.manchester.ac.uk/
projects/ARMOR/RowHammer

[19] D. Gruss, D. Bidner, and S. Mangard, “Practical memory
deduplication attacks in sandboxed javascript,” in ES-
ORICS, 2015.

[20] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR,” in CCS, 2016.

[21] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript,”
in DIMVA, 2016.

[22] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A Fast and Stealthy Cache Attack,” in
DIMVA, 2016.

[23] S. Gueron, “A memory encryption engine suitable for
general purpose processors,” Cryptology ePrint Archive,
Report 2016/204, 2016.

[24] I. Habib, “Virtualization with kvm,” Linux J., vol. 2008,
no. 166, Feb. 2008.

[25] N. Herath and A. Fogh, “These are Not Your Grand
Daddys CPU Performance Counters – CPU Hardware
Performance Counters for Security,” in Black Hat Brief-
ings, 2015.

[26] R.-F. Huang, H.-Y. Yang, M. C.-T. Chao, and S.-C.
Lin, “Alternate hammering test for application-specific
DRAMs and an industrial case study,” in Proceedings of
the 49th Annual Design Automation Conference (DAC),
2012.

[27] IBM, “IBM Chipkill Memory: Advanced ECC Memory
for the IBM Netfinity 7000 M10,” 2019.

[28] Intel Corporation, “Intel Software Guard Extensions
(Intel SGX),” 2016, retrieved on November 7, 2016.
[Online]. Available: https://software.intel.com/en-us/sgx

[29] ——, “kvm-sgx,” 2017. [Online]. Available: https:
//github.com/01org/kvm-sgx

[30] ——, “qemu-sgx,” 2017. [Online]. Available: https:
//github.com/01org/qemu-sgx

[31] ——, “xen-sgx,” 2017. [Online]. Available: https:
//github.com/01org/xen-sgx

https://lwn.net/Articles/704920/
https://lwn.net/Articles/704920/
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
https://software.intel.com/en-us/sgx
https://github.com/01org/kvm-sgx
https://github.com/01org/kvm-sgx
https://github.com/01org/qemu-sgx
https://github.com/01org/qemu-sgx
https://github.com/01org/xen-sgx
https://github.com/01org/xen-sgx

[32] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Mascat:
Stopping microarchitectural attacks before execution,”
Cryptology ePrint Archive, Report 2016/1196, 2017.

[33] Jedec Solid State Technology Association, “Low Power
Double Data Rate 4,” 2017. [Online]. Available: http:
//www.jedec.org/standards-documents/docs/jesd209-4b

[34] M. Jung, C. C. Rheinländer, C. Weis, and N. Wehn,
“Reverse engineering of drams: Row hammer with
crosshair,” in Proceedings of the Second International
Symposium on Memory Systems, 2016.

[35] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu,
and R. Karri, “Magic: Malicious aging in circuits/cores,”
ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 12, no. 1, 2015.

[36] F. Kerschbaum and A.-R. Sadeghi, “Hardidx: Practical
and secure index with sgx,” in Data and Applications
Security and Privacy XXXI: 31st Annual IFIP WG 11.3
Conference, DBSec 2017, vol. 10359, 2017, p. 386.

[37] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural
support for mitigating row hammering in dram memo-
ries,” IEEE Computer Architecture Letters, vol. 14, no. 1,
pp. 9–12, 2015.

[38] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in
memory without accessing them: An experimental study
of DRAM disturbance errors,” in ISCA, 2014.

[39] Kirill A. Shutemov, “Pagemap: Do Not
Leak Physical Addresses to Non-Privileged
Userspace,” Mar. 2015, retrieved on November
10, 2015. [Online]. Available: https://git.kernel.
org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

[40] A. Kurmus, N. Ioannou, N. Papandreou, and T. Parnell,
“From random block corruption to privilege escalation:
A filesystem attack vector for rowhammer-like attacks,”
in Usenix WOOT, 2017.

[41] R. Lal and P. M. Pappachan, “An architecture method-
ology for secure video conferencing,” in IEEE Interna-
tional Conference on Technologies for Homeland Secu-
rity (HST), 2013.

[42] M. Lanteigne, “How Rowhammer Could Be Used to
Exploit Weaknesses in Computer Hardware,” Mar. 2016.
[Online]. Available: http://www.thirdio.com/rowhammer.
pdf

[43] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring fine-grained control flow inside
sgx enclaves with branch shadowing,” in USENIX Secu-
rity Symposium, 2017.

[44] P. J. Meaney, L. A. Lastras-Montano, V. K. Papazova,
E. Stephens, J. S. Johnson, L. C. Alves, J. A. O’Connor,
and W. J. Clarke, “Ibm zenterprise redundant array of in-
dependent memory subsystem,” IBM Journal of Research
and Development, vol. 56, no. 1.2, Jan 2012.

[45] Microsoft, “Introducing azure confidential computing,”
2017. [Online]. Available: https://azure.microsoft.com/
en-us/blog/introducing-azure-confidential-computing

[46] ——, “Cache and Memory Manager
Improvements,” Apr. 2017. [Online]. Available:
https://docs.microsoft.com/en-us/windows-server/
administration/performance-tuning/subsystem/cache-
memory-management/improvements-in-windows-server

[47] A. Moghimi, G. Irazoqui, and T. Eisenbarth,
“Cachezoom: How sgx amplifies the power of cache
attacks,” arXiv:1703.06986, 2017.

[48] O. Mutlu, “The rowhammer problem and other issues
we may face as memory becomes denser,” in Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2017.

[49] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowo zin, K. Vaswani, and M. Costa, “Oblivious
Multi-Party Machine Learning on Trusted Processors,”
in USENIX Security Symposium, 2016.

[50] M. Payer, “HexPADS: a platform to detect “stealth”
attacks,” in ESSoS, 2016.

[51] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard, “DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks,” in USENIX Security Sympo-
sium, 2016.

[52] R. Qiao and M. Seaborn, “A new approach for row-
hammer attacks,” in IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2016.

[53] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida,
and H. Bos, “Flip feng shui: Hammering a needle in the
software stack,” in USENIX Security Symposium, 2016.

[54] Red Hat, Red Hat Enterprise Linux 7 - Virtualization
Tuning and Optimization Guide, 2017.

[55] M. Salyzyn, “UPSTREAM: pagemap: do not leak
physical addresses to non-privileged userspace,” 2015.
[Online]. Available: https://android-review.googlesource.
com/#/c/kernel/common/+/182766

[56] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich, “Vc3:
trustworthy data analytics in the cloud using sgx,” 2015.

[57] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and
S. Mangard, “Malware Guard Extension: Using SGX to
Conceal Cache Attacks,” in DIMVA, 2017.

[58] M. Seaborn and T. Dullien, “Exploiting the DRAM
rowhammer bug to gain kernel privileges,” in Black Hat
Briefings, 2015.

[59] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory
Deduplication as a Threat to the Guest OS,” in EuroSec,
2011.

[60] V. van der Veen, “Drammer: Deterministic rowhammer
attacks on mobile platforms,” 2016. [Online]. Available:
http://vvdveen.com/publications/drammer.slides.pdf

[61] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,
C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuf-
frida, “Drammer: Deterministic rowhammer attacks on
mobile platforms,” in CCS, 2016.

[62] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter, “Leaky cauldron
on the dark land: Understanding memory side-channel

http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/improvements-in-windows-server
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/improvements-in-windows-server
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/improvements-in-windows-server
https://android-review.googlesource.com/#/c/kernel/common/+/182766
https://android-review.googlesource.com/#/c/kernel/common/+/182766
http://vvdveen.com/publications/drammer.slides.pdf

hazards in sgx,” in CCS, 2017.
[63] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One

bit flips, one cloud flops: Cross-vm row hammer attacks
and privilege escalation,” in USENIX Security Sympo-
sium, 2016.

[64] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Differ-
entially analyzing side-channel traces for detecting ssl/tls
vulnerabilities in secure enclaves,” in CCS, 2017.

[65] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems,” in S&P, May 2015.

[66] Y. Yarom and K. Falkner, “Flush+Reload: a High Res-
olution, Low Noise, L3 Cache Side-Channel Attack,” in
USENIX Security Symposium, 2014.

[67] K. S. Yim, “The rowhammer attack injection methodol-
ogy,” in IEEE 35th Symposium on Reliable Distributed
Systems (SRDS), 2016.

[68] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-
time side-channel attack detection system in clouds,” in
RAID, 2016.

APPENDIX

A. Bitflips in sudo

Table IV lists exploitable bitflip offsets that modify opcodes
of sudoers.so (Ubuntu 17.04, sudo version 1.8.19p1)
yielding a skip of the privilege check and, thus, elevating an
unprivileged process to root privileges.

B. Computing the Optimal Runtime of our Attack

The runtime of our attack is computed as

P · (W + n · 0.05)
212 · n

+
n · 216

F · E
+

120 · P
230

seconds, where P is the amount of physical memory installed
in the system, W is the amount of time one waylaying
relocation takes, F is the flip rate (i.e., bit flips per second),

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Exploitable bitflips

R
un

tim
e

[h
ou

rs
] One-location Double-sided Single-sided

One-location (MC) Double-sided (MC) Single-sided (MC)

Fig. 6: Expected total runtime (templating and waylaying) until
the attacker has the target page at the target physical location.

and E is the number of exploitable bit offsets within a 4 kB
page (which depends on the target binary). n ∈ N is the
optimization parameter, the number of bit flips to find in the
templating phase, influencing the runtime of the templating
phase and the waylaying phase. 0.05 seconds is the time
the prefetch address-translation oracle consumes for one test.
120 seconds is the amount of time the prefetch side-channel
attack consumes to translate a virtual to a physical address per
gigabyte (230 bytes) of system memory. The 216 represent the
215 bit offsets of a 4 kB page (212 bytes) which can flip in
both directions each.

On our test system we have P = 12 gigabytes, W = 2.68
seconds for memory waylaying, F = 0.67, and E = 29. With
these values we compute the runtime as

3 · 220 · (2.68 + n · 0.05)
n

+ n · 3373.3 + 24m

seconds. The minimum of this function is reached at n = 50.
Figure 6 shows the expected total runtime of the templating

phase, and memory waylaying and chasing, depending on
which hammering technique is used and how many bit offsets
are exploitable.

TABLE IV: Exploitable bitflip offsets in sudoers.so.

Binary offset Bitflip offset Original Flipped

1 0x8c1c 4 lea rdi, aUser_is_exempt lea rbp, aUser_is_exempt
2 0x8c32 3 mov eax, ebp mov eax, esp
3 0x8d4e 0 lea rax, off_250860 lea rax, off_250860+1
4 0x8d4f 0 lea rax, off_250860 lea rax, unk_250760
5 0x8d59 0 mov eax, [rax+2C8h] mov eax, [rax+2C9h]
6 0x8d59 1 mov eax, [rax+2C8h] mov eax, [rax+2CAh]
7 0x8d59 2 mov eax, [rax+2C8h] mov eax, [rax+2CCh]
8 0x8d59 3 mov eax, [rax+2C8h] mov eax, [rax+2C0h]
9 0x8d59 6 mov eax, [rax+2C8h] mov eax, [rax+288h]

10 0x8d5a 5 mov eax, [rax+2C8h] mov eax, [rax+22C8h]
11 0x8d5d 7 test eax, eax add eax, 485775C0h
12 0x8d5e 0 test eax, eax test ecx, eax
13 0x8d5f 0 jnz short check_user_is_exempt jz short check_user_is_exempt
14 0x8dbd 3 test al, al mov eax, es
15 0x8dbd 7 test al, al add al, 0C0h
16 0x8dbf 0 jnz short near ptr unk_8D61 jz short near ptr unk_8D61
17 0x8dbf 3 jnz short near ptr unk_8D61 jge short near ptr unk_8D61
18 0x8dc4 3 lea rbp, qword_252700 lea rbp, algn_2526F8
19 0x8dc5 1 lea rbp, qword_252700 lea rbp, dword_252900
20 0x8dc5 2 lea rbp, qword_252700 lea rbp, __imp_fflush
21 0x8dc9 3 mov eax, [rbp+0F0h] mov ecx, [rbp+0F0h]
22 0x8dc9 4 mov eax, [rbp+0F0h] mov edx, [rbp+0F0h]
23 0x8dca 7 mov eax, [rbp+0F0h] mov eax, [rbp+70h]
24 0x8dcb 3 mov eax, [rbp+0F0h] mov eax, [rbp+8F0h]
25 0x8dcf 0 test eax, eax test ecx, eax
26 0x8dcf 3 test eax, eax test eax, ecx
27 0x8dd0 2 jnz loc_8FB0 or eax, [rbp+1DAh]
28 0x8dd1 0 jnz loc_8FB0 jz loc_8FB0
29 0x8e23 6 jz loc_8FE8 jz near ptr algn_8FA7+1

	I Introduction
	I-A Our Results and Contributions
	I-B Attack Scenarios
	I-C Paper Outline

	II Background
	II-A The Rowhammer Bug
	II-B Rowhammer Defenses
	II-C The Prefetch Side-Channel Attack
	II-D Intel SGX
	II-E Attacks on (and from) Secure Enclaves

	III Categorization of State-of-the-art Defenses for Commodity Systems
	IV Attacker Model
	V High-Level View of the Attacks
	VI Opcode Flipping
	VII One-location Rowhammer
	VIII Memory Waylaying
	VIII-A Prefetch-based Prediction Oracle
	VIII-B Page Cache Eviction
	VIII-C Positioning Memory Pages

	IX Evaluation of Attacks in Native and Cloud Environments
	IX-A Abusing SGX for ``distributed'' Denial-of-Service Attacks in the Cloud
	IX-B Abusing SGX to Hide Privilege-Escalation Attacks

	X Discussion
	X-A Limitations
	X-B Rowhammer mitigations in hardware
	X-C Design of SGX

	XI Conclusion
	Appendix
	A Bitflips in sudo
	B Computing the Optimal Runtime of our Attack

