

Document Number: 337879-002

Analyzing potential bounds check
bypass vulnerabilities
White Paper

Revision 002
July 2018

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
2 Document Number: 337879-002

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more
at www.intel.com.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.

Intel provides these materials as-is, with no express or implied warranties.

Intel, the Intel logo, Intel Core, Intel Atom, Intel Xeon, Intel Xeon Phi, Intel® C Compiler, Intel Software Guard Extensions, and
Intel® Trusted Execution Engine are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 3

Contents

1.0 Introduction .. 5

2.0 Where mitigations are relevant .. 7

3.0 Identifying bounds check bypass vulnerabilities ... 8
3.1 Common attributes for bounds check bypass vulnerabilities 8
3.2 Loads and stores .. 8
3.3 Typecasting and indirect calls ... 10
3.4 Speculative loops.. 12
3.5 Disclosure gadgets .. 12

4.0 Bounds check bypass store attacks ..13

5.0 Software mitigations for bounds check bypass and bounds check bypass
store ..15
5.1 LFENCE .. 15

5.1.1 Placement of LFENCE .. 16
5.2 Bounds clipping .. 16
5.3 Multiple branches ... 17
5.4 Existing compiler mitigations ... 18
5.5 Additional compiler mitigations .. 18

5.5.1 Microsoft* Visual Studio* 2017 mitigations .. 18
5.5.2 LFENCE in Intel® Fortran Compiler .. 18
5.5.3 Compiler-driven automatic mitigations .. 19

6.0 Operating system mitigations ..20
6.1 Linux* kernel ... 20
6.2 Microsoft Windows* .. 21

6.2.1 Inline/external assembly .. 21
6.2.2 _mm_lfence() compiler intrinsic ... 21
6.2.3 LFENCE in C/C++ .. 22

7.0 References ...23

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
4 Document Number: 337879-002

Revision History

Date Revision Description

July 10,
2018

001 Initial release.

July 26,
2018

002 Added mitigation information for RSB exploits.

§

Introduction

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 5

1.0 Introduction

Side channel methods are techniques that may allow a malicious actor to gain
information through observing the system, such as measuring microarchitectural
properties about the system. For an introduction to speculation and these methods, see
the Intel Analysis of Speculative Execution Side Channels white paper
(https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-
of-Speculative-Execution-Side-Channels-White-Paper.pdf), Speculative Execution Side
Channel Mitigations white paper
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf), and refer to the security research findings
page on intel.com (https://www.intel.com/content/www/us/en/architecture-and-
technology/facts-about-side-channel-analysis-and-intel-products.html).

Bounds check bypass represents a broad class of vulnerabilities. This document
examines common instances of these vulnerabilities, including the bounds check
bypass store variant, but should not be considered a comprehensive list.

This document describes how to analyze potential bounds check bypass and bounds
check bypass store vulnerabilities found by static analysis tools or manual code
inspection and presents mitigation techniques that may be used. This document does
not include any actual code from any real product or open source release, nor does it
discuss or recommend any specific analysis tools.

Bounds check bypass takes advantage of the speculative execution used in processors
to achieve high performance. To avoid the processor having to wait for data to arrive
from memory, or for previous operations to finish, the processor may speculate as to
what will be executed. If it is incorrect, the processor will discard the wrong values and
then go back and redo the computation with the correct values. At the program level
this speculation is invisible, but because instructions were speculatively executed they
might leave hints that a malicious actor can measure, such as which memory locations
have been brought into cache.

Using the bounds check bypass method, malicious actors can use code gadgets
("confused deputy" code) to infer data values that have been used in speculative
operations. This presents a method to access data in the system cache and/or memory
that the malicious actor should not otherwise be able to read. The bounds check
bypass store variant makes an additional range of vulnerabilities possible by targeting
variables on the stack, function pointers, or return addresses. This allows malicious
actors to influence variables used later in speculative execution or to direct speculative
execution to other areas of code, where malicious actors could then observe system
behavior.

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
6 Document Number: 337879-002

These two methods of attack can be mitigated by modifying software through the
insertion of a serializing instruction to constrain speculation in confused deputies. Such
instructions ensure that all instructions in the processor's instruction pipeline up to the
speculation barrier resolve before any later instructions in the pipeline can execute.
This prevents the processor from speculatively accessing data that the user should not
have access to, because no speculative operations can run until the bounds check
operation completes.

The focus of this document is analyzing code written in C and C++, in particular code
running at a higher privilege level than the malicious actor’s code. Similar techniques
apply to assembly language and many other compiled languages. JITs and languages
where runtime safety is imposed by the compiler are discussed in more depth in the
Managed Runtime Speculative Execution Side Channel Mitigations
(https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-
Speculative-Execution-Side-Channel-Mitigations.pdf) white paper.

https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf

Where mitigations are relevant

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 7

2.0 Where mitigations are relevant

Bounds check bypass mitigations are not generally relevant if your code doesn’t have
secrets that the user shouldn’t be able to access. For example, a simple image viewer
probably contains no meaningful secrets that should be inaccessible to software it
interacts with. The user of the software could potentially use bounds check bypass
attacks to access the image, but they could also just hit the save button.

On the other hand, an image viewer with support for secure, encrypted content with
access authorized from a central system might need to care about bounds check
bypass because a user may not be allowed to save the document in normal ways. While
the user can’t save such an image they can trivially photograph the image and send the
photo to someone, so protecting the image may be less important. However, any keys
are likely to be far more sensitive.

There are also clear cases like operating system kernels, firmware (refer to the Host
Firmware Speculative Execution Side Channel Mitigation white paper) and managed
runtimes (for example, Javascript* in web browsers) where there is both a significant
interaction surface between differently trusted code, and there are secrets to protect.

Whether to apply mitigations, and what areas to target has to be part of your general
security analysis and risk modelling, along with conventional security techniques, and
resistance if appropriate to timing and other non-speculative side channel attacks.
Bounds check bypass mitigations have performance impacts, so they should only be
used where appropriate.

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
8 Document Number: 337879-002

3.0 Identifying bounds check bypass
vulnerabilities

3.1 Common attributes for bounds check bypass vulnerabilities

Bounds check bypass code sequences have some common features: they generally
operate on data that is controlled or influenced by a malicious actor, and they all have
some kind of side-effect that can be observed by the malicious actor. In addition, the
processor’s speculative execution sequence executes in a way which would be thrown
away in a normally retired execution sequence. In bounds check bypass store variants,
data is speculatively written at locations that would be out of bounds under normal
execution. That data is later speculatively used to execute code and cause observable
side-effects, creating a side channel.

3.2 Loads and stores

A vulnerable code fragment forming a disclosure gadget is made up of two elements.
The first is an array or pointer dereference that depends upon an untrusted value, for
example, a value from a potentially malicious application. The second element is
usually a load or store to an address that is dependent upon the value loaded by the
first element. Refer to Microsoft’s* blog
(https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-
execution-side-channel-hardware-vulnerabilities/) for further details.

As bounds check bypass is based upon speculation, code can be vulnerable even if that
untrusted value is correctly tested for bounds before use.

The classic general example of such a sequence in C is:

if (user_value >= 0 && user_value < LIMIT) {

 x = table[user_value];

 node = entry[x];

} else

 return ERROR;

For such a code sequence to be vulnerable, both elements must be present.
Furthermore the untrusted value must be under the malicious actor’s control.

When the code executes, the processor has to decide if the user_value < LIMIT
conditional is true or false. It remembers the processor register state at this point and
speculates (makes a guess) that user_value is below LIMIT and begins executing

https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/

Identifying bounds check bypass vulnerabilities

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 9

instructions as if this were true. Once the processor realizes it guessed incorrectly, it
throws away the computation and returns an error. The attack relies upon the fact that
before it realizes the guess was incorrect, the processor has read both
table[user_value], pointing into memory beyond the intended limit, and has read
entry[x]. When the processor reads entry[x], it may bring in the corresponding
cache line from memory into the L1 cache. Later, the malicious actor can time accesses
to this address to determine whether the corresponding cache line is in the L1 data
cache. The malicious actor can use this timing to discover the value x, which was loaded
from a location specified by a malicious actor.

The two components that make up this vulnerable code sequence can be stretched out
over a considerable distance and through multiple layers of function calls. The
processor can speculatively execute many instructions—a number sufficient to pass
between functions, compilation units, or even software exception handlers such as
longjmp or throw. The processor may speculate through locked operations, and use
of volatile will not change the vulnerability of the code being exploited.

There are several other sequences that may leak information. Anything that tests some
property of a value and loads or stores according to the result may leak information.
Depending upon the location of foo and bar, the example below might be able to leak
bit 0 of arbitrary data.

if (user_value >= LIMIT)

 return ERROR;

 x = table[user_value];

 if (x & 1)

 foo++;

 else

 bar++;

When evaluating code sequences for vulnerability to bounds check bypass, the critical
question is whether different behavior could be observed as a property of x.

This question can be very challenging to answer from code inspection, especially when
looking for any specific code pattern. For instance, if a value is passed to a function call,
then that function call must be inspected to ensure it does not create any observable
interactions. Consider the following example:

if (user_value >= LIMIT)

 return ERROR;

 x = lengths[user_value];

 if (x)

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
10 Document Number: 337879-002

 memset(buffer, 0, 64 * x);

Here, x influences how much memory is cleared by memset() and might allow the
malicious actor to discern something about the value of x from which cache lines the
speculatively executed memset touches.

Remember that conditional execution is not just if, but may also include for and
while as well as the C ternary (?:) operator and situations where one of the values is
used to index an array of function pointers.

3.3 Typecasting and indirect calls

Typecasting can be a problematic area to analyze and often conceals real examples
that can be exploited. This is especially challenging in C++ because you are more likely
to have function pointers embedded in objects and overloaded operators that might
behave in type-dependent fashion.

Two classes of typecasting problems are relevant to bounds check bypass attacks:

1. Code/data mismatches. Speculation causes “class Foo” code to be
speculatively executed on “class Bar” data using gadgets supplied with Foo to
leak information about Bar.

2. The type confusion is combined with some observable effect, like the load/store
effects discussed above. For example, if Foo and Bar are different sizes, a
malicious actor might be able to learn something about memory past the end
of objects[] using something like the example below.

type = objects[index];

 if (index >= len)

 return -EINVAL;

 if (type == TYPE_FOO)

 memset(ptr, 0, sizeof(Foo));

 else

 memset(ptr, 0, sizeof(Bar));

Take care when considering any code where a typecast occurs based upon a
speculated value. The processor might guess the type incorrectly and speculatively
execute instructions based on that incorrect type. Newer processors that enable Intel®
OS Guard, also known as Supervisor-Mode Execution Prevention (SMEP), will prevent
ring 0 code from speculatively executing ring 3 code. All major operating systems
(OSes) enable SMEP support by default if the hardware supports it. Older processors
however, might speculate the type incorrectly, load data that the processor thinks are

Identifying bounds check bypass vulnerabilities

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 11

function pointers, or speculate into lower addresses that might be directly controlled
by a malicious actor.

For example:

if (flag & 4)

 (Foo *)ptr->process(x);

else

 (Bar *)ptr->process(x);

If the Foo and Bar objects are different and have different memory layouts, then the
processor will speculatively fetch a pointer offset of ptr and branch to it.

Consider the following example:

int call; /* from user */

if (call >= 0 && call < MAX_FUNCTION)

 function_table[call](a,b,c);

On first analysis this code might seem safe. We reference function_table[call],
but call is the user’s own, known value. However, during speculative execution, the
processor might incorrectly speculate through the if statement and speculatively
execute invalid addresses. Some of these addresses might be mapped to user pages in
memory, or might contain values that match suitable gadgets for ROP attacks.

A less obvious variant of this case is switch statements. Many compilers will convert
some classes of switch statement into jump tables. Refer to the following example
code:

switch(x) {

case 0: return y;

case 1: return z;

...

default: return -1;

}

Code similar to this will often be implemented by the compiler as shown:

if (x < 0 || x > 2) return -1;

goto case[x];

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
12 Document Number: 337879-002

Therefore when using switch() with an untrusted input, it might be appropriate to
place an lfence before the switch so that x has been fully resolved before the implicit
bounds check.

3.4 Speculative loops

A final case to consider is loops that speculatively overrun. Consider the following
example:

while (++x < limit) {

 y = u[x];

 thing(y);

}

The processor will speculate the loop condition, and often speculatively execute the
next iteration of the loop. This is usually fine, but if the loop contains code that reveals
the contents of data, then you might need to apply mitigations to avoid exposing data
beyond the intended location of the loop. This means that even if the loop limit is
properly protected before the processor enters the loop, unless the loop itself is
protected, the loop might leak a small amount of data beyond the intended buffer on
the speculative path.

3.5 Disclosure gadgets

In addition to the load and store disclosure gadget referenced above, there may be
additional gadgets based on the microarchitectural state. For example, using certain
functional blocks, such as Intel® Advanced Vector Extensions (Intel® AVX), during
speculative execution may affect the time it takes to subsequently use the block due to
factors like the time required to power-up the block. Malicious actors can use a
disclosure primitive to measure the time it takes to use the block. An example of such a
gadget is shown below:

if (x > sizeof(table))

 return ERROR;

 If (a[x].op == OP_VECTOR)

 avx_operation(a[x]);

 else

 integer_operation(a[x]);

Bounds check bypass store attacks

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 13

4.0 Bounds check bypass store attacks

The bounds check bypass store method makes an additional range of vulnerabilities
possible. By targeting the stack or function pointers, it is possible to manipulate the
speculative code flow of the processor in a way that directs execution to speculative
code which the processor may not expect to be called with untrusted user data. This
provides a way for a malicious actor to point speculative execution in more specific
areas where they can measure operations in order to collect secrets.

In the following example, a speculative store allows the malicious actor to speculatively
overwrite any variables, temporary values, or function pointers that will be called by the
processor with data under the malicious actor’s control. The malicious actor can also
speculatively modify return addresses on the stack to make the processor speculatively
execute disclosure code present in the system. As the instruction and data cache are
separated, this attack cannot directly target code, only things like function pointers or
return addresses.

int function(int user_index, unsigned long user_key) {

 unsigned long data[8];

if (user_index < 8)

 data[user_index] = user_key;

 else

 return -1;

sort_table(data);

 return 0;

}

The example above does not by itself allow a bounds check bypass attack. However, it
does allow the attack to speculatively modify memory, and therefore could potentially
be used to chain attacks. For example a speculative write to the return address could
cause the final return 0 to speculatively return to a user-controlled disclosure
gadget.

Where the compiler has spilled variables to the stack, the store can also be used to
target those spilled values and speculatively modify them to enable another attack to
follow. An example of this would be by targeting the base address of an array

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
14 Document Number: 337879-002

dereference or the limit value. For further information, refer to the Variant 1: Bounds
Check Bypass section of the Intel Analysis of Speculative Execution Side Channels
white paper (https://software.intel.com/sites/default/files/managed/b9/f9/336983-
Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf).

A second variant of this method can occur where a user value is being copied into an
array, either on the stack or adjacent to function pointers. As discussed previously, the
processor may speculatively execute a loop more times than is actually needed. If this
loop moves through memory writing malicious actor-controlled values, then the
malicious actor may be able to speculatively perform a buffer overrun attack.

int filltable(uint16_t *from)

{

 uint16_t buffer[64];

 int i;

 for (i = 0; i < 64; i++)

 buffer[i] = *from++;

}

In some cases, the example above might speculatively copy more bytes than 64 into
the array, changing the return address speculatively used by the processor so that it
instead returns to a user controlled gadget.

As the execution is speculative, some processors will allow speculative writes to read-
only memory, and will reuse that data speculatively. Therefore, while placing function
pointers into write-protected space is a good general security mitigation, doing so is
not sufficient mitigation in this case.

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf

Software mitigations for bounds check bypass and bounds check bypass store

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 15

5.0 Software mitigations for bounds check bypass
and bounds check bypass store

Software can insert a speculation stopping barrier between a bounds check and a later
operation that could cause a speculative side channel. The LFENCE instruction, or any
serializing instruction, can serve as such a barrier. These instructions suffice regardless
of whether the bounds checking is implemented using conditional branches or through
the use of boundchecking instructions (BNDCL and BNDCU) that are part of the Intel®
Memory Protection Extensions (Intel® MPX).

The LFENCE instruction and other serializing instructions (refer to Chapter 8.3, Volume
3a of the Intel Software Developers Manual (https://software.intel.com/en-
us/articles/intel-sdm)) ensure that no later instruction will execute, even speculatively,
until all prior instructions have completed locally. This prevents the processor from
speculatively accessing data that might be out-of-bounds for the user, because no
speculative operations can run until this bounds check completes. This essentially
creates a barrier where speculative execution cannot take place in locations not
allowed for that user. The LFENCE instruction has lower latency than the serializing
instruction execution and thus is recommended.

5.1 LFENCE

The main mitigation for bounds check bypass is through use of the LFENCE instruction.
The LFENCE instruction does not execute until all prior instructions have completed
locally, and no later instruction begins execution until LFENCE completes. Most
vulnerabilities identified in the Identifying vulnerabilities section can be protected by
inserting an LFENCE instruction; for example:

if (user_value >= LIMIT)

 return ERROR;

lfence();

x = table[user_value];

node = entry[x]

Where lfence() is a compiler intrinsic or assembler inline that issues an LFENCE
instruction and also tells the compiler that memory references may not be moved
across that boundary. The LFENCE ensures that the loads do not occur until the
condition has actually been checked. The memory barrier prevents the compiler from
reordering references around the LFENCE, and thus breaking the protection.

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
16 Document Number: 337879-002

5.1.1 Placement of LFENCE

To protect against speculative timing attacks, place the LFENCE instruction after the
range check and branch, but before any code that consumes the checked value, and
before the data can be used in a gadget that might allow measurement.

For example:

 if (x > sizeof(table))

 return ERROR;

 lfence();

 If (a[x].op == OP_VECTOR)

 avx_operation(a[x]);

 else

 integer_operation(a[x]);

Unless there are specific reasons otherwise, and the code has been carefully analyzed,
Intel recommends that the LFENCE is always placed after the range check and before
the range checked value is consumed by other code, particularly if the code involves
conditional branches.

5.2 Bounds clipping

Other instructions such as CMOVcc, AND, ADC, SBB and SETcc can also be used to help
prevent bounds check bypass by constraining speculative execution on current family 6
processors (Intel® Core™, Intel® Atom™, Intel® Xeon® and Intel® Xeon Phi™ processors).
However, these instructions may not be guaranteed to do so on future Intel processors.
Intel intends to release further guidance on the usage of instructions to constrain
speculation in the future before processors with different behavior are released.

Memory disambiguation (described in the Speculative Execution Side Channel
Mitigations white paper
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf) can theoretically impact such speculation
constraining sequences when they involve a load from memory.

This approach can avoid stalling the pipeline as LFENCE does.

At the simplest:

unsigned int user_value;

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf

Software mitigations for bounds check bypass and bounds check bypass store

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 17

if (user_value > 255)

 return ERROR;

x = table[user_value];

Can be made safe by instead using the following logic:

volatile unsigned int user_value;

if (user_value > 255)

 return ERROR;

x = table[user_value & 255];

This works for powers of two array lengths or bounds only. In the example above the
table array length is 256 (2^8), and the valid index should be <= 255. Take care that the
compiler used does not optimize away the & 255 operation. For other ranges, it’s
possible to use CMOVcc, ADC, SBB, SETcc, and similar instructions to do verification.

Although this mitigation approach can be faster than other approaches it is not
guaranteed for the future. Developers who cannot control which CPUs their software
will run on (such as general application, library, and SDK developers) should not use
this mitigation technique. Intel intends to release further guidance on how to use
serializing instructions to constrain speculation before future processors with different
behavior are released.

Both of these techniques can be applied to function call tables, while the LFENCE
approach is generally the only technique that can be used when typecasting.

5.3 Multiple branches

When using mitigations, particularly the bounds clipping mitigations, it is important to
remember that the processor will speculate through multiple branches. Thus, the
following code is not safe:

int *key;

int valid = 0;

if (input < NUM_ENTRIES) {

 lfence();

 key = &table[input];

 valid = 1;

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
18 Document Number: 337879-002

}

….

if (valid)

 *key = data;

In this example, although the mitigation is applied correctly when the processor
speculates that the first condition is valid, no protection is applied if the processor
takes the out-of-range value and then speculates that valid is true on the other path.
In this case it will probably expose the contents of a random register, although not in an
easy to measure fashion.

Preinitializing key to NULL or another safe address will also not reliably work, as the
compiler can eliminate the NULL assignment because it can never be used non-
speculatively. In such cases it may be more appropriate to merge the two conditional
code sections and put the code between them into a separate function that is called on
both paths. Or you could add volatile to key and assign it to NULL—forcing the
assignment to occur with volatile, or to add lfence before the final assignment.

5.4 Existing compiler mitigations

Existing compiler protections against buffer overwrites of return addresses, such as
stack canaries, provide some resistance to speculative buffer overruns. In situations
where a loop speculatively overwrites the return address it will also speculatively
trigger the stack protection diverting the speculative flow. Stack canaries alone are not
sufficient to protect from bounds check bypass attacks.

5.5 Additional compiler mitigations

5.5.1 Microsoft* Visual Studio* 2017 mitigations

The Microsoft Visual Studio* 2017 Visual C++ compiler toolchain includes support for
the /Qspectre flag, which may automatically add mitigation for some bounds check
bypass vulnerabilities. For more information and usage guidelines, refer to Microsoft’s
public blog (https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-
mitigations-in-msvc/) and the Visual C++ /Qspectre option page
(https://docs.microsoft.com/en-us/cpp/build/reference/qspectre) for further details.

5.5.2 LFENCE in Intel® Fortran Compiler

You can insert an LFENCE instruction in Fortran applications as shown in the example
below. Implement the following subroutine, which calls _mm_lfence() intrinsics:

https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre

Software mitigations for bounds check bypass and bounds check bypass store

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 19

interface

 subroutine for_lfence() bind (C, name = "_mm_lfence")

 !DIR$ attributes known_intrinsic, default ::
for_lfence

 end subroutine for_lfence

 end interface

 if (untrusted_index_from_user .le. iarr1%length) then

 call for_lfence()

 ival = iarr1%data(untrusted_index_from_user)

 index2 = (IAND(ival,1)*z'100') + z'200'

 if(index2 .le. iarr2%length)

 ival2 = iarr2%data(index2)

 endif

The LFENCE intrinsic is supported in the following Intel compilers:

• Intel C++ Compiler 8.0 and later for Windows*, Linux*, and macOS*.

• Intel Fortran Compiler 14.0 and later for Windows, Linux, and macOS.

5.5.3 Compiler-driven automatic mitigations

Across the industry, there is interest in mitigations for bounds check bypass
vulnerabilities that are provided automatically by compilers. Developers are continuing
to evaluate the efficacy, reliability, and robustness of these mitigations and to
determine whether they are best used in combination with, or in lieu of, the more
explicit mitigations discussed above.

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
20 Document Number: 337879-002

6.0 Operating system mitigations

Where possible, dedicated operating system programming APIs should be used to
mitigate bounds check bypass instead of using open-coded mitigations. Using the OS-
provided APIs will help ensure that code can take advantage of new mitigation
techniques or optimizations as they become available.

6.1 Linux* kernel

The current Linux* kernel mitigation approach to bounds check bypass is described in
the speculation.txt
(https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/
speculation.txt) file in the Linux kernel documentation. This file is subject to change as
developers and multiple processor vendors determine their preferred approaches.

ifence(): on x86 architecture, this issues an LFENCE and provides the compiler with
the needed memory barriers to perform the mitigation. It can be used as lfence(), as
in the examples above. On non-Intel processors, ifence() either generates the
correct barrier code for that processor, or does nothing if the processor does not
speculate.

array_ptr(array, index, max): this is an inline that, irrespective of the
processor, provides a method to safely dereference an array element. Additionally, it
returns NULL if the lookup is invalid. This allows you to take the many cases where you
range check and then check that an entry is present, and fold those cases into a single
conditional test.

Thus we can turn:

if (handle < 32) {

 x = handle_table[handle];

 if (x) {

 function(x);

 return 0;

 }

}

return –EINVAL;

Into:

x = array_ptr(handle_table, handle, 32);

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/speculation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/speculation.txt

Operating system mitigations

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 21

if (x == NULL)

 return –EINVAL;

function(*x);

return 0;

6.2 Microsoft Windows*

Windows C/C++ developers have a variety of options to assist in mitigating bounds
check bypass. The best option will depend on the compiler/code generation toolchains
you are using. Mitigation options include manual and compiler assisted.

In mixed-mode compiler environments, where object files for the same project are built
with different toolchains, there are varying degrees of mitigation options available.
Developers need to be aware of and apply the appropriate mitigations depending on
their code composition and appropriate toolchain support dependencies.

As described in section 5.0 Software mitigations for bounds check bypass and bounds
check bypass store, we recommend inserting LFENCE instructions (either manually or
with compiler assistance) for mitigating bounds check bypass on Windows. The
following sections provide details on how to insert the LFENCE instruction using
currently available compiler tool chain mechanisms. These mechanisms are (from
lowest level to highest level):

• Inline/external assembly

• _mm_lfence() compiler intrinsic

• Compiler automatic LFENCE insertion

6.2.1 Inline/external assembly

The Intel® C Compiler and Intel® C++ Compiler provide inline assembly support for 32-
and 64-bit targets, whereas Microsoft Visual* C++ only provides inline assembly
support for 32-bit targets. Microsoft Macro Assembler* (MASM) or other external, third
party assemblers may also be used to insert LFENCE in assembly code.

6.2.2 _mm_lfence() compiler intrinsic

The Intel C Compiler, the Intel C++ Compiler, and the Microsoft Visual C++ compiler all
support generating LFENCE instructions for 32- and 64-bit targets using the
_mm_lfence() intrinsic.

Analyzing potential bounds check bypass vulnerabilities
White Paper July 2018
22 Document Number: 337879-002

The easiest way for Windows developers to gain access to the intrinsic is by including
the intrin.h header file that is provided by the compilers. Some Windows SDK/WDK
headers (for example, winnt.h and wdm.h) define the _mm_lfence() intrinsic to avoid
inclusion of the compiler intrin.h. It is possible that you already have code that locally
defines _mm_lfence() as well, or uses an already existing definition for the intrinsic.

6.2.3 LFENCE in C/C++

You can insert LFENCE instructions in a C/C++ program as shown in the example below:

#include <intrin.h>

#pragma intrinsic(_mm_lfence)

 if (user_value >= LIMIT)

 {

 return STATUS_INSUFFICIENT_RESOURCES;

 }

 else

 {

 _mm_lfence(); /* manually inserted by developer */

 x = table[user_value];

 node = entry[x];

 }

References

 Analyzing potential bounds check bypass vulnerabilities
July 2018 White Paper
Document Number: 337879-002 23

7.0 References

• https://docs.microsoft.com/en-us/cpp/build/reference/qspectre

• https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-
relnotes#top-issues-fixed-in-156

• https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-
v15.5#15.5.5

• https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-
v15.0#15.0.26228.23

• https://support.microsoft.com/en-us/help/4073757/protect-your-windows-
devices-against-spectre-meltdown

• https://portal.msrc.microsoft.com/en-US/security-
guidance/advisory/ADV180002

• https://cloudblogs.microsoft.com/microsoftsecure/2018/01/09/understanding
-the-performance-impact-of-spectre-and-meltdown-mitigations-on-windows-
systems/

• https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-
msvc/

• https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations.pdf

• https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-
Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf

• https://www.intel.com/content/www/us/en/architecture-and-technology/facts-
about-side-channel-analysis-and-intel-products.html

• https://software.intel.com/en-us/articles/intel-sdm

https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes#top-issues-fixed-in-156
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes#top-issues-fixed-in-156
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-v15.5#15.5.5
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-v15.5#15.5.5
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-v15.0#15.0.26228.23
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-v15.0#15.0.26228.23
https://support.microsoft.com/en-us/help/4073757/protect-your-windows-devices-against-spectre-meltdown
https://support.microsoft.com/en-us/help/4073757/protect-your-windows-devices-against-spectre-meltdown
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180002
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180002
https://cloudblogs.microsoft.com/microsoftsecure/2018/01/09/understanding-the-performance-impact-of-spectre-and-meltdown-mitigations-on-windows-systems/
https://cloudblogs.microsoft.com/microsoftsecure/2018/01/09/understanding-the-performance-impact-of-spectre-and-meltdown-mitigations-on-windows-systems/
https://cloudblogs.microsoft.com/microsoftsecure/2018/01/09/understanding-the-performance-impact-of-spectre-and-meltdown-mitigations-on-windows-systems/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://software.intel.com/en-us/articles/intel-sdm

	1.0 Introduction
	2.0 Where mitigations are relevant
	3.0 Identifying bounds check bypass vulnerabilities
	3.1 Common attributes for bounds check bypass vulnerabilities
	3.2 Loads and stores
	3.3 Typecasting and indirect calls
	3.4 Speculative loops
	3.5 Disclosure gadgets

	4.0 Bounds check bypass store attacks
	5.0 Software mitigations for bounds check bypass and bounds check bypass store
	5.1 LFENCE
	5.1.1 Placement of LFENCE

	5.2 Bounds clipping
	5.3 Multiple branches
	5.4 Existing compiler mitigations
	5.5 Additional compiler mitigations
	5.5.1 Microsoft* Visual Studio* 2017 mitigations
	5.5.2 LFENCE in Intel® Fortran Compiler
	5.5.3 Compiler-driven automatic mitigations

	6.0 Operating system mitigations
	6.1 Linux* kernel
	6.2 Microsoft Windows*
	6.2.1 Inline/external assembly
	6.2.2 _mm_lfence() compiler intrinsic
	6.2.3 LFENCE in C/C++

	7.0 References

