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1.0 Introduction 

Side channel methods are techniques that may allow a malicious actor to gain 
information through observing the system, such as measuring microarchitectural 
properties about the system. For an introduction to speculation and these methods, see 
the Intel Analysis of Speculative Execution Side Channels white paper 
(https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-
of-Speculative-Execution-Side-Channels-White-Paper.pdf), Speculative Execution Side 
Channel Mitigations white paper 
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf), and refer to the security research findings 
page on intel.com (https://www.intel.com/content/www/us/en/architecture-and-
technology/facts-about-side-channel-analysis-and-intel-products.html). 

Bounds check bypass represents a broad class of vulnerabilities. This document 
examines common instances of these vulnerabilities, including the bounds check 
bypass store variant, but should not be considered a comprehensive list.  

This document describes how to analyze potential bounds check bypass and bounds 
check bypass store vulnerabilities found by static analysis tools or manual code 
inspection and presents mitigation techniques that may be used. This document does 
not include any actual code from any real product or open source release, nor does it 
discuss or recommend any specific analysis tools. 

Bounds check bypass takes advantage of the speculative execution used in processors 
to achieve high performance. To avoid the processor having to wait for data to arrive 
from memory, or for previous operations to finish, the processor may speculate as to 
what will be executed. If it is incorrect, the processor will discard the wrong values and 
then go back and redo the computation with the correct values. At the program level 
this speculation is invisible, but because instructions were speculatively executed they 
might leave hints that a malicious actor can measure, such as which memory locations 
have been brought into cache. 

Using the bounds check bypass method, malicious actors can use code gadgets 
("confused deputy" code) to infer data values that have been used in speculative 
operations. This presents a method to access data in the system cache and/or memory 
that the malicious actor should not otherwise be able to read. The bounds check 
bypass store variant makes an additional range of vulnerabilities possible by targeting 
variables on the stack, function pointers, or return addresses. This allows malicious 
actors to influence variables used later in speculative execution or to direct speculative 
execution to other areas of code, where malicious actors could then observe system 
behavior. 

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
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These two methods of attack can be mitigated by modifying software through the 
insertion of a serializing instruction to constrain speculation in confused deputies. Such 
instructions ensure that all instructions in the processor's instruction pipeline up to the 
speculation barrier resolve before any later instructions in the pipeline can execute. 
This prevents the processor from speculatively accessing data that the user should not 
have access to, because no speculative operations can run until the bounds check 
operation completes.   

The focus of this document is analyzing code written in C and C++, in particular code 
running at a higher privilege level than the malicious actor’s code. Similar techniques 
apply to assembly language and many other compiled languages. JITs and languages 
where runtime safety is imposed by the compiler are discussed in more depth in the 
Managed Runtime Speculative Execution Side Channel Mitigations 
(https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-
Speculative-Execution-Side-Channel-Mitigations.pdf) white paper. 

https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/7c/4a/Managed-Runtime-Speculative-Execution-Side-Channel-Mitigations.pdf
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2.0 Where mitigations are relevant 

Bounds check bypass mitigations are not generally relevant if your code doesn’t have 
secrets that the user shouldn’t be able to access. For example, a simple image viewer 
probably contains no meaningful secrets that should be inaccessible to software it 
interacts with. The user of the software could potentially use bounds check bypass 
attacks to access the image, but they could also just hit the save button. 

On the other hand, an image viewer with support for secure, encrypted content with 
access authorized from a central system might need to care about bounds check 
bypass because a user may not be allowed to save the document in normal ways. While 
the user can’t save such an image they can trivially photograph the image and send the 
photo to someone, so protecting the image may be less important. However, any keys 
are likely to be far more sensitive. 

There are also clear cases like operating system kernels, firmware (refer to the Host 
Firmware Speculative Execution Side Channel Mitigation white paper) and managed 
runtimes (for example, Javascript* in web browsers) where there is both a significant 
interaction surface between differently trusted code, and there are secrets to protect. 

Whether to apply mitigations, and what areas to target has to be part of your general 
security analysis and risk modelling, along with conventional security techniques, and 
resistance if appropriate to timing and other non-speculative side channel attacks. 
Bounds check bypass mitigations have performance impacts, so they should only be 
used where appropriate. 
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3.0 Identifying bounds check bypass 
vulnerabilities 

3.1 Common attributes for bounds check bypass vulnerabilities 

Bounds check bypass code sequences have some common features: they generally 
operate on data that is controlled or influenced by a malicious actor, and they all have 
some kind of side-effect that can be observed by the malicious actor. In addition, the 
processor’s speculative execution sequence executes in a way which would be thrown 
away in a normally retired execution sequence. In bounds check bypass store variants, 
data is speculatively written at locations that would be out of bounds under normal 
execution. That data is later speculatively used to execute code and cause observable 
side-effects, creating a side channel. 

3.2 Loads and stores 

A vulnerable code fragment forming a disclosure gadget is made up of two elements. 
The first is an array or pointer dereference that depends upon an untrusted value, for 
example, a value from a potentially malicious application. The second element is 
usually a load or store to an address that is dependent upon the value loaded by the 
first element. Refer to Microsoft’s* blog 
(https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-
execution-side-channel-hardware-vulnerabilities/) for further details. 

As bounds check bypass is based upon speculation, code can be vulnerable even if that 
untrusted value is correctly tested for bounds before use.  

The classic general example of such a sequence in C is: 

if (user_value >= 0 && user_value < LIMIT) { 

       x = table[user_value]; 

       node = entry[x]; 

} else 

       return ERROR; 

For such a code sequence to be vulnerable, both elements must be present. 
Furthermore the untrusted value must be under the malicious actor’s control. 

When the code executes, the processor has to decide if the user_value < LIMIT 
conditional is true or false. It remembers the processor register state at this point and 
speculates (makes a guess) that user_value is below LIMIT and begins executing 

https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
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instructions as if this were true. Once the processor realizes it guessed incorrectly, it 
throws away the computation and returns an error. The attack relies upon the fact that 
before it realizes the guess was incorrect, the processor has read both 
table[user_value], pointing into memory beyond the intended limit, and has read 
entry[x]. When the processor reads entry[x], it may bring in the corresponding 
cache line from memory into the L1 cache. Later, the malicious actor can time accesses 
to this address to determine whether the corresponding cache line is in the L1 data 
cache. The malicious actor can use this timing to discover the value x, which was loaded 
from a location specified by a malicious actor.  

The two components that make up this vulnerable code sequence can be stretched out 
over a considerable distance and through multiple layers of function calls. The 
processor can speculatively execute many instructions—a number sufficient to pass 
between functions, compilation units, or even software exception handlers such as 
longjmp or throw. The processor may speculate through locked operations, and use 
of volatile will not change the vulnerability of the code being exploited.  

There are several other sequences that may leak information. Anything that tests some 
property of a value and loads or stores according to the result may leak information. 
Depending upon the location of foo and bar, the example below might be able to leak 
bit 0 of arbitrary data. 

if (user_value >= LIMIT) 

  return ERROR; 

 x = table[user_value]; 

 if (x & 1)  

  foo++; 

 else 

  bar++; 

When evaluating code sequences for vulnerability to bounds check bypass, the critical 
question is whether different behavior could be observed as a property of x.  

This question can be very challenging to answer from code inspection, especially when 
looking for any specific code pattern. For instance, if a value is passed to a function call, 
then that function call must be inspected to ensure it does not create any observable 
interactions. Consider the following example: 

if (user_value >= LIMIT) 

  return ERROR; 

 x = lengths[user_value]; 

 if (x) 
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  memset(buffer, 0, 64 * x); 

Here, x influences how much memory is cleared by memset() and might allow the 
malicious actor to discern something about the value of x from which cache lines the 
speculatively executed memset touches. 

Remember that conditional execution is not just if, but may also include for and 
while as well as the C ternary (?:) operator and situations where one of the values is 
used to index an array of function pointers. 

3.3 Typecasting and indirect calls 

Typecasting can be a problematic area to analyze and often conceals real examples 
that can be exploited. This is especially challenging in C++ because you are more likely 
to have function pointers embedded in objects and overloaded operators that might 
behave in type-dependent fashion. 

Two classes of typecasting problems are relevant to bounds check bypass attacks: 

1. Code/data mismatches. Speculation causes “class Foo” code to be 
speculatively executed on “class Bar” data using gadgets supplied with Foo to 
leak information about Bar. 

2. The type confusion is combined with some observable effect, like the load/store 
effects discussed above. For example, if Foo and Bar are different sizes, a 
malicious actor might be able to learn something about memory past the end 
of objects[] using something like the example below. 

type = objects[index]; 

 if (index >= len) 

  return -EINVAL; 

 if (type == TYPE_FOO) 

  memset(ptr, 0, sizeof(Foo)); 

 else 

  memset(ptr, 0, sizeof(Bar)); 

Take care when considering any code where a typecast occurs based upon a 
speculated value. The processor might guess the type incorrectly and speculatively 
execute instructions based on that incorrect type. Newer processors that enable Intel® 
OS Guard, also known as Supervisor-Mode Execution Prevention (SMEP), will prevent 
ring 0 code from speculatively executing ring 3 code. All major operating systems 
(OSes) enable SMEP support by default if the hardware supports it. Older processors 
however, might speculate the type incorrectly, load data that the processor thinks are 
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function pointers, or speculate into lower addresses that might be directly controlled 
by a malicious actor. 

For example: 

if (flag & 4) 

  (Foo *)ptr->process(x); 

else 

  (Bar *)ptr->process(x); 

If the Foo and Bar objects are different and have different memory layouts, then the 
processor will speculatively fetch a pointer offset of ptr and branch to it. 

Consider the following example: 

int call; /* from user */ 

if (call >= 0 && call < MAX_FUNCTION) 

  function_table[call](a,b,c); 

On first analysis this code might seem safe. We reference function_table[call], 
but call is the user’s own, known value. However, during speculative execution, the 
processor might incorrectly speculate through the if statement and speculatively 
execute invalid addresses. Some of these addresses might be mapped to user pages in 
memory, or might contain values that match suitable gadgets for ROP attacks. 

A less obvious variant of this case is switch statements. Many compilers will convert 
some classes of switch statement into jump tables. Refer to the following example 
code: 

switch(x) { 

case 0: return y; 

case 1: return z; 

... 

default: return -1; 

} 

Code similar to this will often be implemented by the compiler as shown: 

if (x < 0 || x > 2) return -1; 

goto  case[x]; 
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Therefore when using switch() with an untrusted input, it might be appropriate to 
place an lfence before the switch so that x has been fully resolved before the implicit 
bounds check. 

3.4 Speculative loops 

A final case to consider is loops that speculatively overrun. Consider the following 
example: 

while (++x < limit) { 

 y = u[x]; 

 thing(y); 

} 

The processor will speculate the loop condition, and often speculatively execute the 
next iteration of the loop. This is usually fine, but if the loop contains code that reveals 
the contents of data, then you might need to apply mitigations to avoid exposing data 
beyond the intended location of the loop. This means that even if the loop limit is 
properly protected before the processor enters the loop, unless the loop itself is 
protected, the loop might leak a small amount of data beyond the intended buffer on 
the speculative path. 

3.5 Disclosure gadgets 

In addition to the load and store disclosure gadget referenced above, there may be 
additional gadgets based on the microarchitectural state. For example, using certain 
functional blocks, such as Intel® Advanced Vector Extensions (Intel® AVX), during 
speculative execution may affect the time it takes to subsequently use the block due to 
factors like the time required to power-up the block. Malicious actors can use a 
disclosure primitive to measure the time it takes to use the block. An example of such a 
gadget is shown below: 

if (x > sizeof(table)) 

  return ERROR; 

 If (a[x].op == OP_VECTOR) 

  avx_operation(a[x]); 

 else 

  integer_operation(a[x]); 
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4.0 Bounds check bypass store attacks 

The bounds check bypass store method makes an additional range of vulnerabilities 
possible. By targeting the stack or function pointers, it is possible to manipulate the 
speculative code flow of the processor in a way that directs execution to speculative 
code which the processor may not expect to be called with untrusted user data. This 
provides a way for a malicious actor to point speculative execution in more specific 
areas where they can measure operations in order to collect secrets. 

In the following example, a speculative store allows the malicious actor to speculatively 
overwrite any variables, temporary values, or function pointers that will be called by the 
processor with data under the malicious actor’s control. The malicious actor can also 
speculatively modify return addresses on the stack to make the processor speculatively 
execute disclosure code present in the system. As the instruction and data cache are 
separated, this attack cannot directly target code, only things like function pointers or 
return addresses. 

int function(int user_index, unsigned long user_key) { 

  unsigned long data[8]; 

   

if (user_index < 8) 

   data[user_index] = user_key; 

  else 

   return -1; 

  

sort_table(data); 

 

  return 0; 

} 

The example above does not by itself allow a bounds check bypass attack. However, it 
does allow the attack to speculatively modify memory, and therefore could potentially 
be used to chain attacks. For example a speculative write to the return address could 
cause the final return 0 to speculatively return to a user-controlled disclosure 
gadget. 

Where the compiler has spilled variables to the stack, the store can also be used to 
target those spilled values and speculatively modify them to enable another attack to 
follow. An example of this would be by targeting the base address of an array 
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dereference or the limit value. For further information, refer to the Variant 1: Bounds 
Check Bypass section of the Intel Analysis of Speculative Execution Side Channels 
white paper (https://software.intel.com/sites/default/files/managed/b9/f9/336983-
Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf). 

A second variant of this method can occur where a user value is being copied into an 
array, either on the stack or adjacent to function pointers. As discussed previously, the 
processor may speculatively execute a loop more times than is actually needed. If this 
loop moves through memory writing malicious actor-controlled values, then the 
malicious actor may be able to speculatively perform a buffer overrun attack. 

int filltable(uint16_t *from) 

{ 

  uint16_t buffer[64]; 

  int i; 

 

  for (i = 0; i < 64; i++) 

    buffer[i] = *from++; 

} 

In some cases, the example above might speculatively copy more bytes than 64 into 
the array, changing the return address speculatively used by the processor so that it 
instead returns to a user controlled gadget. 

As the execution is speculative, some processors will allow speculative writes to read-
only memory, and will reuse that data speculatively. Therefore, while placing function 
pointers into write-protected space is a good general security mitigation, doing so is 
not sufficient mitigation in this case. 

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
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5.0 Software mitigations for bounds check bypass 
and bounds check bypass store 

Software can insert a speculation stopping barrier between a bounds check and a later 
operation that could cause a speculative side channel. The LFENCE instruction, or any 
serializing instruction, can serve as such a barrier. These instructions suffice regardless 
of whether the bounds checking is implemented using conditional branches or through 
the use of boundchecking instructions (BNDCL and BNDCU) that are part of the Intel® 
Memory Protection Extensions (Intel® MPX). 

The LFENCE instruction and other serializing instructions (refer to Chapter 8.3, Volume 
3a of the Intel Software Developers Manual (https://software.intel.com/en-
us/articles/intel-sdm)) ensure that no later instruction will execute, even speculatively, 
until all prior instructions have completed locally. This prevents the processor from 
speculatively accessing data that might be out-of-bounds for the user, because no 
speculative operations can run until this bounds check completes. This essentially 
creates a barrier where speculative execution cannot take place in locations not 
allowed for that user. The LFENCE instruction has lower latency than the serializing 
instruction execution and thus is recommended. 

5.1 LFENCE 

The main mitigation for bounds check bypass is through use of the LFENCE instruction. 
The LFENCE instruction does not execute until all prior instructions have completed 
locally, and no later instruction begins execution until LFENCE completes. Most 
vulnerabilities identified in the Identifying vulnerabilities section can be protected by 
inserting an LFENCE instruction; for example: 

if (user_value >= LIMIT) 

 return ERROR; 

lfence(); 

x = table[user_value]; 

node = entry[x] 

Where lfence() is a compiler intrinsic or assembler inline that issues an LFENCE 
instruction and also tells the compiler that memory references may not be moved 
across that boundary. The LFENCE ensures that the loads do not occur until the 
condition has actually been checked. The memory barrier prevents the compiler from 
reordering references around the LFENCE, and thus breaking the protection. 

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
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5.1.1 Placement of LFENCE 

To protect against speculative timing attacks, place the LFENCE instruction after the 
range check and branch, but before any code that consumes the checked value, and 
before the data can be used in a gadget that might allow measurement.  

For example: 

 if (x > sizeof(table)) 

   return ERROR; 

  lfence(); 

  If (a[x].op == OP_VECTOR) 

   avx_operation(a[x]); 

  else 

   integer_operation(a[x]); 

Unless there are specific reasons otherwise, and the code has been carefully analyzed, 
Intel recommends that the LFENCE is always placed after the range check and before 
the range checked value is consumed by other code, particularly if the code involves 
conditional branches. 

5.2 Bounds clipping 

Other instructions such as CMOVcc, AND, ADC, SBB and SETcc can also be used to help 
prevent bounds check bypass by constraining speculative execution on current family 6 
processors (Intel® Core™, Intel® Atom™, Intel® Xeon® and Intel® Xeon Phi™ processors). 
However, these instructions may not be guaranteed to do so on future Intel processors. 
Intel intends to release further guidance on the usage of instructions to constrain 
speculation in the future before processors with different behavior are released. 

Memory disambiguation (described in the Speculative Execution Side Channel 
Mitigations white paper 
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf) can theoretically impact such speculation 
constraining sequences when they involve a load from memory. 

This approach can avoid stalling the pipeline as LFENCE does. 

At the simplest: 

unsigned int user_value; 

 

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
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if (user_value > 255) 

 return ERROR; 

x = table[user_value]; 

Can be made safe by instead using the following logic: 

volatile unsigned int user_value; 

 

if (user_value > 255) 

 return ERROR; 

x = table[user_value & 255]; 

This works for powers of two array lengths or bounds only. In the example above the 
table array length is 256 (2^8), and the valid index should be <= 255. Take care that the 
compiler used does not optimize away the & 255 operation. For other ranges, it’s 
possible to use CMOVcc, ADC, SBB, SETcc, and similar instructions to do verification. 

Although this mitigation approach can be faster than other approaches it is not 
guaranteed for the future. Developers who cannot control which CPUs their software 
will run on (such as general application, library, and SDK developers) should not use 
this mitigation technique. Intel intends to release further guidance on how to use 
serializing instructions to constrain speculation before future processors with different 
behavior are released. 

Both of these techniques can be applied to function call tables, while the LFENCE 
approach is generally the only technique that can be used when typecasting. 

5.3 Multiple branches 

When using mitigations, particularly the bounds clipping mitigations, it is important to 
remember that the processor will speculate through multiple branches. Thus, the 
following code is not safe: 

int *key; 

int valid = 0; 

 

if (input < NUM_ENTRIES) { 

  lfence(); 

  key = &table[input]; 

  valid = 1; 
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} 

…. 

if (valid) 

  *key = data; 

In this example, although the mitigation is applied correctly when the processor 
speculates that the first condition is valid, no protection is applied if the processor 
takes the out-of-range value and then speculates that valid is true on the other path. 
In this case it will probably expose the contents of a random register, although not in an 
easy to measure fashion. 

Preinitializing key to NULL or another safe address will also not reliably work, as the 
compiler can eliminate the NULL assignment because it can never be used non-
speculatively. In such cases it may be more appropriate to merge the two conditional 
code sections and put the code between them into a separate function that is called on 
both paths. Or you could add volatile to key and assign it to NULL—forcing the 
assignment to occur with volatile, or to add lfence before the final assignment. 

5.4 Existing compiler mitigations 

Existing compiler protections against buffer overwrites of return addresses, such as 
stack canaries, provide some resistance to speculative buffer overruns. In situations 
where a loop speculatively overwrites the return address it will also speculatively 
trigger the stack protection diverting the speculative flow. Stack canaries alone are not 
sufficient to protect from bounds check bypass attacks. 

5.5 Additional compiler mitigations 

5.5.1 Microsoft* Visual Studio* 2017 mitigations 

The Microsoft Visual Studio* 2017 Visual C++ compiler toolchain includes support for 
the /Qspectre flag, which may automatically add mitigation for some bounds check 
bypass vulnerabilities. For more information and usage guidelines, refer to Microsoft’s 
public blog (https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-
mitigations-in-msvc/) and the Visual C++ /Qspectre option page 
(https://docs.microsoft.com/en-us/cpp/build/reference/qspectre) for further details. 
 

5.5.2 LFENCE in Intel® Fortran Compiler 

You can insert an LFENCE instruction in Fortran applications as shown in the example 
below. Implement the following subroutine, which calls _mm_lfence() intrinsics: 

https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
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interface 

        subroutine for_lfence() bind (C, name = "_mm_lfence") 

            !DIR$ attributes known_intrinsic, default :: 
for_lfence 

        end subroutine for_lfence 

    end interface 

   

    if (untrusted_index_from_user .le. iarr1%length) then 

        call for_lfence() 

        ival = iarr1%data(untrusted_index_from_user) 

        index2 = (IAND(ival,1)*z'100') + z'200'    

        if(index2 .le. iarr2%length) 

            ival2 = iarr2%data(index2) 

    endif 

The LFENCE intrinsic is supported in the following Intel compilers: 

• Intel C++ Compiler 8.0 and later for Windows*, Linux*, and macOS*. 

• Intel Fortran Compiler 14.0 and later for Windows, Linux, and macOS. 

5.5.3 Compiler-driven automatic mitigations 

Across the industry, there is interest in mitigations for bounds check bypass 
vulnerabilities that are provided automatically by compilers. Developers are continuing 
to evaluate the efficacy, reliability, and robustness of these mitigations and to 
determine whether they are best used in combination with, or in lieu of, the more 
explicit mitigations discussed above. 
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6.0 Operating system mitigations 

Where possible, dedicated operating system programming APIs should be used to 
mitigate bounds check bypass instead of using open-coded mitigations. Using the OS-
provided APIs will help ensure that code can take advantage of new mitigation 
techniques or optimizations as they become available. 

6.1 Linux* kernel 

The current Linux* kernel mitigation approach to bounds check bypass is described in 
the speculation.txt 
(https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/
speculation.txt) file in the Linux kernel documentation. This file is subject to change as 
developers and multiple processor vendors determine their preferred approaches. 

ifence(): on x86 architecture, this issues an LFENCE and provides the compiler with 
the needed memory barriers to perform the mitigation. It can be used as lfence(), as 
in the examples above. On non-Intel processors, ifence() either generates the 
correct barrier code for that processor, or does nothing if the processor does not 
speculate. 

array_ptr(array, index, max): this is an inline that, irrespective of the 
processor, provides a method to safely dereference an array element. Additionally, it 
returns NULL if the lookup is invalid. This allows you to take the many cases where you 
range check and then check that an entry is present, and fold those cases into a single 
conditional test. 

Thus we can turn: 

if (handle < 32) { 

 x = handle_table[handle]; 

 if (x) { 

  function(x); 

  return 0; 

 } 

} 

return –EINVAL; 

Into: 

x = array_ptr(handle_table, handle, 32); 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/speculation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/speculation.txt
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if (x == NULL) 

 return –EINVAL; 

function(*x); 

return 0; 

6.2 Microsoft Windows* 

Windows C/C++ developers have a variety of options to assist in mitigating bounds 
check bypass. The best option will depend on the compiler/code generation toolchains 
you are using. Mitigation options include manual and compiler assisted.  

In mixed-mode compiler environments, where object files for the same project are built 
with different toolchains, there are varying degrees of mitigation options available. 
Developers need to be aware of and apply the appropriate mitigations depending on 
their code composition and appropriate toolchain support dependencies. 

As described in section 5.0 Software mitigations for bounds check bypass and bounds 
check bypass store, we recommend inserting LFENCE instructions (either manually or 
with compiler assistance) for mitigating bounds check bypass on Windows. The 
following sections provide details on how to insert the LFENCE instruction using 
currently available compiler tool chain mechanisms. These mechanisms are (from 
lowest level to highest level): 

• Inline/external assembly 

• _mm_lfence() compiler intrinsic 

• Compiler automatic LFENCE insertion 

6.2.1 Inline/external assembly 

The Intel® C Compiler and Intel® C++ Compiler provide inline assembly support for 32- 
and 64-bit targets, whereas Microsoft Visual* C++ only provides inline assembly 
support for 32-bit targets. Microsoft Macro Assembler* (MASM) or other external, third 
party assemblers may also be used to insert LFENCE in assembly code. 

6.2.2 _mm_lfence() compiler intrinsic 

The Intel C Compiler, the Intel C++ Compiler, and the Microsoft Visual C++ compiler all 
support generating LFENCE instructions for 32- and 64-bit targets using the 
_mm_lfence() intrinsic.  
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The easiest way for Windows developers to gain access to the intrinsic is by including 
the intrin.h header file that is provided by the compilers. Some Windows SDK/WDK 
headers (for example, winnt.h and wdm.h) define the _mm_lfence() intrinsic to avoid 
inclusion of the compiler intrin.h. It is possible that you already have code that locally 
defines _mm_lfence() as well, or uses an already existing definition for the intrinsic.   

6.2.3 LFENCE in C/C++ 

You can insert LFENCE instructions in a C/C++ program as shown in the example below: 

#include <intrin.h> 

#pragma intrinsic(_mm_lfence) 

  

    if (user_value >= LIMIT) 

    { 

        return STATUS_INSUFFICIENT_RESOURCES; 

    } 

    else 

    {    

        _mm_lfence();   /* manually inserted by developer */ 

        x = table[user_value]; 

        node = entry[x]; 

    } 



 
References 
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