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Abstract—The ANSI X9.17/X9.31 random number generator
is a pseudorandom number generator design based on a block
cipher and updated using the current time. First standardized
in 1985, variants of this PRNG design were incorporated into
numerous cryptographic standards over the next three decades.
It remained on the list of FIPS 140-1 and 140-2 approved
random number generation algorithms until January 2016. The
design uses a static key with the specified block cipher to
produce pseudo-random output. It has been known since at
least 1998 that the key must remain secret in order for the
random number generator to be secure. However, neither the
FIPS 140-2 standardization process in 2001 or NIST’s update of
the algorithm in 2005 appear to have specified any process for
key generation.

We performed a systematic study of publicly available FIPS
140-2 certifications for hundreds of products that implemented
the ANSI X9.31 random number generator, and found twelve
whose certification documents use of static hard-coded keys in
source code, leaving them vulnerable to an attacker who can learn
this key from the source code or binary. In order to demonstrate
the practicality of this attack, we develop a full passive decryption
attack against FortiGate VPN gateway products using FortiOS
version 4. Private key recovery requires a few seconds of
computation. We measured the prevalence of this vulnerability on
the visible Internet using active scans and find that we are able to
recover the random number generator state for 21% of HTTPS
hosts serving a default Fortinet product certificate, and 97%
of hosts with metadata identifying FortiOSv4. We successfully
demonstrate full private key recovery in the wild against a subset
of these hosts that accept IPsec connections.

I. INTRODUCTION

Random number generation is a vital component of any
cryptographic system. While systems may survive subtle flaws
in cryptographic algorithm implementation, the ability to
predict the output of a (pseudo)random number generator
typically leads to the catastrophic failure of any protocol built
on top of it. In recent years a number of cryptographic systems
have been found to include flawed random and pseudorandom
number generation subsystems. These flaws range from subtle
weaknesses e.g., biases that admit sophisticated attacks against
the protocol [1]; to catastrophic vulnerabilities that allow for
adversarial recovery of all of random coins used in a protocol
execution [2], [3]. In a particularly ominous development,
some of these flaws appear to have been deliberately engi-
neered. For example, leaks by Edward Snowden indicate that
the NIST Dual EC DRBG standard may have been designed
with a malicious backdoor [4]. While there is no way to
empirically verify this allegation, we know for certain that
the Dual EC algorithm has been successfully exploited: in

2015 Juniper Networks revealed that their ScreenOS line of
VPN devices had been modified to include a malicious set of
Dual EC parameters, which likely enabled passive decryption
of VPN sessions [3].

The problem of constructing random and pseudorandom
number generators has been extensively explored by indus-
try [5], [6], [7] and in the academic literature [8], [9], [10],
[11], [12]. Despite the abundant results of this effort, the
industry has consistently relied on a small number of common
pseudorandom number generation algorithms. To a large extent
this can be attributed to standards bodies. For example, until
2007 there were only two algorithms for pseudorandom num-
ber generation approved for U.S. FIPS 140 certification,1 and
prior to 1998 only one such algorithm was specified. Recent
discoveries surrounding the inclusion of flawed generators
motivate a more thorough examination of these generators —
and particularly, their use in approved cryptographic products.

The ANSI X9.17/31 standards. The ANSI X9.17 “Financial
Institution Key Management (Wholesale)” standard, first pub-
lished in 1985, defined a voluntary interoprability standard for
cryptographic key generation and distribution for the financial
industry. This standard included a pseudorandom number
generator (PRG) in Appendix C as a suggested method to
generate key material. This generator uses a block cipher (in
the original description, DES) to produce output from the
current state, and to update the state using the current time.

This random number generator design appeared in gov-
ernment cryptographic standards for the next two decades,
occasionally updated with new block cipher designs. A subset
of the ANSI X9.17-1985 standard was adopted as a FIPS
standard, FIPS-171, in 1992. FIPS-171 specified that “only
NIST-approved key generation algorithms (e.g., the technique
defined in Appendix C of ANSI X9.17) shall be used”. FIPS
140-1, adopted in 1994, specified that modules should use
a FIPS approved key generation algorithm; FIPS 186-1, the
original version of the DSA standard adopted in 1998, lists the
X9.17 PRG as an approved method to generate private keys.
The ANSI X9.31 standard from 1998 specified a variant of
the X9.17 PRG using two-key 3DES as the block cipher; this
variant was included as an approved random number generator
in further standards such as FIPS 186-2, from 2004. NIST

1Maintained by the U.S. National Institute of Standards and Technology
(NIST), the FIPS 140 series of documents outline standards for validating
cryptographic modules. This standard is used by the U.S. Cryptographic
Module Validation Program to perform official certification of products used
in U.S. government applications, including banking.
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published extensions of this design using three-key 3DES and
AES as the block cipher [13] that were officially included on
the FIPS 140-2 list of approved random number generation
algorithms in 2005.

A critical design element of the ANSI X9.17/X9.31 PRG
is that the cipher key used with the block cipher remains
fixed through each iteration. In order to remain secure, the
key must never be revealed to external attackers. If the key
should become known, an attacker can use the key to decrypt
the output and recover all future and past states of the random
number generator by brute forcing the timestamp [8]. Perhaps
due to this known weakness, the ANSI X9.17/X9.31 design
was deprecated in 2011 and removed from the FIPS list of
approved PRG designs in January 2016. NIST SP 800-131A,
the document announcing the deprecation of this algorithm,
also deprecated a number of smaller cryptographic key sizes
along with a rationale for doing so; no rationale appears to
have been given for the transition away from X9.31.

Despite this significant flaw, which was identified by Kelsey
et al. in 1998 [8], the NIST documents specifying the ANSI
X9.31 PRG design fail to specify any requirements for how
the cipher key should be generated [13]. This raises the
possibility that even FIPS-validated deployed systems could
contain vulnerabilities that admit practical PRG state recovery.
To evaluate this possibility, we performed a systematic study
of publicly available FIPS 140-2 certification for hundreds of
products that implemented the ANSI X9.31 random number
generator.

Our results show that a non-trivial subset of vendors use
static hard-coded keys in source code, leaving them vulnerable
to an attacker who can learn this key from the source code
or binary. In order to demonstrate the practicality of this
attack, we reverse-engineered the binaries for a Fortigate VPN
gateway using FortiOS version 4. We discovered that the ANSI
X9.31 PRG implementation used to generate encryption keys
for IPsec uses a hard-coded key, which is a test value given in
the NIST RNGVS specification [14], published as a validation
suite alongside their standardization of the generator. We are
able to perform full state recovery in under a second from
random number generator output. We observe that a passive
adversary observing the IKEv2 handshake used to set up
an IPsec connection can carry out a state recovery attack
using the plaintext nonce values in the handshake, and then
derive the secret key generated during the cryptographic key
exchange. We demonstrate a full attack that learns the session
keys for a Fortigate IPsec VPN using FortiOS version 4 in
seconds. Furthermore, we demonstrate that this vulnerability
exists in the wild by performing state recovery, key recovery,
and decryption on handshakes we collected using internet-
wide scanning of VPN hosts.

This is not a “NOBUS” backdoor: it is symmetric, and
thus an attacker with access to the source code or device can
recover the secrets needed to compromise the random number
generator. However, the failure mode of static, discoverable
keys we exploit was not ruled out by standards, and appears to
have been independently implemented by a variety of vendors
attempting to deploy this random number generator. This is a
failure of the standardization process that has led to real and

ongoing vulnerabilities.

A. Our Contributions

• To our knowledge, we are the first to note that the
official standardized descriptions of the X9.17/X9.31 fail
to protect implementers against state compromise attacks.

• We perform a systematic study of FIPS 140 security
policy documentation and discover several independently
vulnerable RNG implementations from different vendors.

• We develop an efficient passive X9.31 state recovery
attack for the FortiOS v4 IPsec implementation and
demonstrate full IPsec VPN decryption.

• We use Internet-wide measurements to measure the scope
of this vulnerability among publicly visible hosts, and
demonstrate exploitation on real hosts in the wild.

B. Disclosure

We disclosed the X9.31 vulnerability to Fortinet in October
2016. Fortinet responded by releasing a patch for affected
versions of FortiOS. FortiOS version 5 did not implement the
X9.31 PRG and is not vulnerable.

We disclosed the potential for a similar flaw in Cisco
Aironet devices to Cisco in June 2017. After performing
an internal investigation, Cisco determined that the affected
software versions had all reached end-of-support status. They
were unable to find the relevant source code to validate the
flaw.

We notified the remaining vendors listed in Table I in
October 2017. BeCrypt pointed us to version 3.0 of their
library, which has been FIPS certified and no longer includes
the X9.31 random number generator. They told us that the only
fixed key inside the FIPS module is for self-test purposes.
ViaSat USA had no record of the product indicated in the
security documentation and ViaSat UK failed to respond to
our disclosure. We did not receive substantive responses from
any other vendors.

NIST has already disallowed use of the ANSI X9.31 RNG
independently of our work. Despite these disclosures, we
detected many vulnerable devices still active on the open
Internet, and additional devices may reside within enterprise
networks.

C. Ethics

While we demonstrate key recovery and decryption against
live hosts we do not own on the Internet, the traffic we decrypt
in our proof-of-concept attack is a handshake we initiated with
this host. We did not collect traffic or attempt decryption for
connections in which we were not a party. We also followed
community best practices for network scans, including limiting
scan rates, respecting hosts who wished to be blacklisted, and
working with vendors and end users to minimize effects to
their networks.

II. BACKGROUND

A. Pseudorandom generators
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Definition 1 (Pseudorandom generator). A pseudorandom
generator (PRG) is a pair of algorithms (I,G). The seeding al-
gorithm I(λ) takes a security parameter λ and probabilistically
generates an initial state s ∈ S, typically some fixed-length bit
string. The generation algorithm G : n×S → {0, 1}n×S maps
the current state to an n-bit output and a new state. For any
λ, integer q ≥ 1, initial seed s0 ∈ I(λ), and any list of non-
negative integers (n1, n2, . . . , nq) we let outq(G, s0) denote
the set of bit strings (r1, r2, . . . , rq) produced by computing
(ri, si)← G(ni, si−1) for i = 1 to q. A PRG is secure when
no adversary can distinguish between the outputs outq and a
set of random bits.2

The PRG discussed in this work extends this basic definition
slightly, as the generate function G also takes (and may
return) some additional input, namely a counter or timer value
that is used as a partial input to the generator. We require
that pseudorandomness hold even when this auxiliary data is
predictable or adversarially-chosen.

B. ANSI X9.31
The ANSI X9.31 random number generator is an algorithm

that was included in some form on the list of approved
random number generators for FIPS and NIST standards
between 1992 and 2016. The design first appeared in the ANSI
X9.17 standard giving cryptography for the financial industry,
published in 1985, using DES for the block cipher; the X9.31
variant uses two-key 3DES for the block cipher, and NIST
published updated versions of the design using three-key 3DES
and AES in 2005. [13] While this design has appeared under
various names for the past three decades, we will refer to it as
the X9.31 PRG for the rest of this paper, to use the terminology
in modern implementations and standards.

The PRG is based on a block cipher with block size ` bits.
In our case of interest, we will specialize to AES, and define
` = 128. EK(Y ) represents the encipherment of Y under the
key K.

The seeding algorithm I selects an initial seed s = (K,V )
where V is generated randomly and K is a pre-generated
fixed key K for the block cipher. The exact language used to
describe the key in the NIST specification [13] for the AES-
based variant is “For AES 128-bit key, let *K be a 128 bit key.”
and similarly for 192 and 256 bits. It continues “This *K is
reserved only for the generation of pseudo-random numbers.”

The jth call to the generate algorithm G takes as input a
desired output length in bits n, the current state s = (K,V )
and a series of timestamps (T1, . . . , TN ) where N = dn/`e.
Let V0 = V at the start of the generate call. For i = 1 to N
the state is updated using the current timestamp Ti as follows.
First, generate an intermediate value

Ii = EK(Ti).

Then one block of output is generated as

Ri = EK(Ii ⊕ Vi−1) (1)

and the state for the next iteration is

Vi = EK(Ri ⊕ Ii)
2We draw our notation from the definition of Dodis et al. [15].

Ti AESK

Vi−1 ⊕ AESK

⊕ AESK Vi

Ri

Fig. 1: A single iteration of the ANSI X9.31 PRG generation
function (G) using AES as the symmetric cipher. The inputs
are a timestamp Ti and a seed Vi−1. The iteration produces
an output block Ri and a new seed Vi on each iteration.

The output of G is the string truncaten(R1‖R2‖ . . . ‖Rb)
where truncaten outputs the leftmost n bits, as well as the
updated state s′ = (K,Vb). A diagram of the generation
algorithm appears in Figure 1.

C. State Recovery Attack with a Known Key

We are not aware of a formal proof showing that ANSI
X9.31 is pseudorandom, though this is likely to be the case if
the block cipher is a pseudorandom permutation (PRP). Kelsey
et al. [8] observed that the generator is clearly vulnerable when
K is not kept secret. An attacker who is able to learn K
can recover the current state using two consecutive blocks
of output together with guesses for the timestamps used to
generate them. (A single block of output is not enough to
uniquely identify the state, but two blocks will almost surely
identify it uniquely.) Let R0 be a block of output generated
at T0, and R1 be a block of output generated at T1, and let
D(Y ) be the decryption of Y using key K. We can rearrange
the above equations to write the first block in terms of the
second block and the timestamps:

D(D(R1)⊕ E(T1)) = R0 ⊕ E(T0) (2)

If the timestamps are only known approximately, we can
brute force the timestamps within some range until we find
a pair that yields equality, or apply a meet-in-the-middle
attack [8]. If one block is not known completely, we can
rearrange the encryptions and decryptions and verify equality
of the known portion of the block. Once the two timestamps
T1 and T2 have been recovered, the seed for the next round is

V2 = E(R1 ⊕ E(T1))

A guess for the output from the next iteration of the random
number generator is then uniquely defined by a guess for the
following timestamp T2:

R2 = E(E(T2)⊕ V2) (3)

The above attack allows an attacker who has access to
raw X9.31 output to recover the state. With this state in
hand, the attacker can now predict any subsequent output by
running the normal generation algorithm using a guess for each
subsequent timestamp. Alternatively, she can recover previous
output blocks by “winding the generator backwards” using a
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guess for earlier timestamps. Both attacks require the same
effort.

In order to understand the impact on real cryptographic
usage, we will now describe how this attack works in theory
in the context of popular cryptographic protocols.

D. Attacking X9.31 in TLS

Checkoway et al. [16] performed an in-depth analysis of
the vulnerability of the TLS protocol to a compromised
random number generator in the context of the Dual EC
DRBG. The attack surface is similar for a vulnerable X9.31
implementation, with two key differences: (1) where the Dual
EC backdoor was asymmetric, and thus only a party who
generates the curve points used with Dual EC can detect the
presence of the backdoor or exploit it, the X9.31 vulnerability
is symmetric, and any implementation that stores a fixed secret
key in code or hardware is vulnerable to passive exploitation
by an attacker who can recover the key through reverse
engineering. Separately (2) the Dual EC attack requires a
minimum of approximately 28 bytes of contiguous PRG output
to perform a successful attack, while the ANSI attack can
be conducted with fewer bytes.3 Surprisingly, this second
restriction can play a major role in determining in the cost
of an attack on a protocol such as TLS or IPsec.

1) TLS Background: A TLS 1.0, 1.1, or 1.2 handshake
begins with a client hello message, which contains a 32-byte
random nonce and a list of supported cipher suites. The server
responds with a server hello message, which contains a 32-
byte random nonce, the server’s choice of cipher suite, and
the server’s certificate which contains its long-term public
key. The server and client then negotiate shared secret keying
material using the asymmetric cipher chosen by the server. In
the case of RSA, the client encrypts a secret to the server’s
public key; in the case of Diffie-Hellman or elliptic curve
Diffie-Hellman, the server and client exchange Diffie-Hellman
key exchange messages. At this point the client and server
authenticate the handshake using symmetric keys derived from
their negotiated shared secret and the nonces, and swich to
sending symmetrically encrypted data.

2) State and key recovery in TLS: If the X9.31 PRG is
used to generate both the random nonce and the cryptographic
secrets used for the key exchange, then an attacker could
use the raw PRG output in the nonce to carry out the state
recovery attack, and then use knowledge of the state to derive
the secret keys. The 256-bit client or server random is exactly
two blocks of AES output. Some TLS implementations include
a 32-bit timestamp in the first 4 bytes of the nonce; in this
case the attacker would have fewer than two full blocks,
but since the two timestamps are likely generated in quick
succession, the attacker will likely recover a unique possible

3In practice, given (256 − n) bits of contiguous generator output, Dual
EC state recovery involves a guessing phase consisting of 2n elliptic curve
operations. This becomes costly for values of n ≥ 32. By contrast, the ANSI
attack requires only 128 bits of contiguous generator output for initial state
recovery and a small portion of a second block to test for correctness. Given
(256−n) total bits the probability of recovering the wrong state is generally
small (approximately M ∗ 2−(128−n) when brute forcing over a timestamp
space of size M ) even when n is large.

state. For a Diffie-Hellman based key exchange, this attack
could work if either the client or server uses the vulnerable
PRG; for RSA key exchange, the client generates the RSA-
encrypted premaster secret and the key exchange would only
be compromised if the client uses the vulnerable PRG.

E. Attacking X9.31 in IPsec

Checkoway et al. [3] describe the impact of a compromised
random number generator on the IKE key exchange used in
IPsec in the context of the Dual EC PRG. Our case is similar.
We describe the protocols in detail, since we target IPsec for
our proof-of-concept decryption.

1) IPSec/IKEv2 background: IPSec is a Layer-3 protocol
suite for end-to-end IP packet encryption, authentication and
access control, widely used for the implementation of Virtual
Private Networks (VPNs). The IKE (Internet Key Exchange)
family of protocols allows two hosts, denoted the Initiator and
Responder, to establish an authenticated “Security Associa-
tion”, a secure communication channel. Two versions of IKE
exist, IKEv1 and IKEv2. Both versions use the Diffie-Hellman
key exchange protocol to establish a shared secret.

IKEv1. The original IKE specification [17] defines two
phases, an initial key exchange phase (Phase 1) and a second
phase (Phase 2) that uses keying material from the first
phase to establish an IPSec SA. In Phase 1, authenticated
key exchange can be performed using two handshake types:
Main Mode or Aggressive Mode. In Main Mode, the initiator
sends a Security Association (SA) payload, with a series of
proposals for combinations of cipher suites and parameters.
The responder responds with an SA payload indicating its
chosen cipher proposal. Each party then sends a Key Exchange
(KE) message, which contains a Diffie-Hellman key exchange
payload, together with information needed to authenticate the
key exchange. The format and the information differs depend-
ing on the chosen authentication method. IKE supports four
authentication methods: two public key encryption methods, a
digital signature method, and a pre-shared key authentication
mode. When using digital signatures or a pre-shared key
to authenticate, both the initiator and responder send their
Diffie-Hellman key exchange message together with a cleartext
nonce of length between “8 and 256 bytes inclusive” [17].
Each packet in the exchange includes an 8-byte (non-random)
cookie4 from the initiator and responder, which is used to
uniquely identify the connection to each participant.

Both parties then compute a series of symmetric encryption
and authentication keys from the Diffie-Hellman shared secret,
the nonces, and the cookies. If PSK authentication is used, the
PSK is also incorporated into this key derivation process. All
messages following this point are now encrypted using these
newly generated symmetric keys. Each side then exchanges
certificates and identities, and authenticates the key exchange
using the negotiated authentication method.

In Aggressive Mode, the initiator sends the SA and KE
payloads together and the responder replies with its SA, KE

4The ISAKMP specification (RFC 2408) [18] suggests that the cookie be
generated by applying the MD5 hash function to the participant IPs, ports,
and a local random secret. It does not consist of raw RNG output.
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AUTHSPIr,

Fig. 2: Randomness and the IKEv2 Handshake. The IKEv2
handshake establishes an authenticated, encrypted connection
using a Diffie-Hellman key exchange. In our target implemen-
tation, both the SPI and nonce N are raw, unencrypted outputs
from the PRG. We will use them to recover the secret used
to generate the key exchange message KE, which is generated
from the PRG immediately afterward. The encrypted portions
of the handshake are inside of a gray box.

and authentication messages together. IKEv1 Aggressive mode
using pre-shared key authentication is widely considered to
be a security risk because the authentication hash is sent
unencrypted, which could allow an attacker to brute force the
PSK.

In Phase 2, participants can negotiate additional keying ma-
terial and exchange parameters using another Diffie-Hellman
exchange, with messages encrypted using the key established
in Phase 1. After negotiating this further material, the parties
can exchange encrypted data.

IKEv2. The IKEv2 protocol was standardized in 2005 [19].
IKEv2 eliminates the two-phase structure from the IKE spec-
ifications and a handshake can be completed in as few as four
messages. We show an abbreviated version of the IKEv2 hand-
shake in Figure 2. First the initiator sends an IKE SA INIT
message, with proposals similar to IKEv1, including a Diffie-
Hellman public key generated using its best guess for the
proposal parameters that will be accepted by the responder.
Every message includes a header containing a cookie called
the SPI. 5

The responder replies with its own IKE SA INIT messages
either containing its public key if the initiator guessed correctly
and otherwise containing an INVALID KE PAYLOAD and
causing the initiator to retry with “the corrected Diffie-Hellman
Group” [19].

After a completed Diffie-Hellman key exchange, the two
parties authenticate each other and create an IPsec SA using
IKE AUTH messages, which are encrypted and integrity-
protected using keys derived from the Diffie-Hellman shared
secret, the nonces, and the SPI values. The analogue of Phase
2 in IKEv2 is the encrypted CREATE CHILD SA exchange,
which optionally can perform a second Diffie-Hellman key
exchange.

5In IKEv2’s initial key exchange phase the cookie field from IKEv1 is
renamed to the ’Security Parameter Index’ (SPI) not to be confused with the
IPSec SPI that identifies a particular SA. Furthering confusion, the IKEv2
specification also defines a COOKIE SA payload, designed to help thwart
resource exhaustion attacks, this was known as the IPSec SPI in IKEv1.

2) State recovery in IPsec: An attack on the IKE handshake
exploiting a vulnerable X9.31 implementation would proceed
much as described in [3]. The attacker would need raw X9.31
output to be used to generate both the random nonce and the
secret key used for the Diffie-Hellman key exchange for either
initiator or responder, the nonce should be close to two block
lengths long, and ideally the Diffie-Hellman secret key would
be generated shortly after the nonce. The attacker would then
guess the timestamps used to generate the nonce in order to
recover the state of the random number generator at each step.
The attacker can confirm a correct guess by checking equality
for Equation 2. The attacker then guesses the two timestamps
used for the next two blocks of output using Equation 3
and confirms the guesses by calculating the Diffie-Hellman
public value (using the two output blocks as the exponent)
and comparing against the intercepted value.

Full symmetric key recovery for IKEv1 depends on the
details of the authentication method. The attacker can validate
state recovery and Diffie-Hellman secret compromise against
a single key exchange packet from one side of the connection,
but depending on the authentication type they may need further
information to generate the session keys. For pre-shared key
authentication, the attacker would need to learn the pre-shared
key in addition to the nonces and cookies that appear in
the clear in the handshake. For signature authentication, the
attacker does not need to learn any information beyond the
nonces and cookies that appear in the clear in the handshake.
For public key encryption authentication, the nonces are en-
crypted, so the attacker would need to learn the private keys
for both sides of the connection in order to learn the nonces
and derive the session keys.

For IKEv2, the IKE SA INIT messages contain all of the
fields necessary to perform state recovery and derive the
Diffie-Hellman secret in the clear: timestamps, nonces, the SPI
nonce, and both key exchange values. We note that IKEv2 with
a PSK uses the PSK only for authentication, and not to derive
encryption keys. A passive attacker would need to collect both
sides of the handshake in order to derive the session keys
necessary to decrypt content, but state recovery and Diffie-
Hellman secret compromise can be validated against a single
packet from the vulnerable side of the connection.

III. HARDCODED X9.31 KEYS IN FIPS CERTIFICATION

As discussed in Section II-B, the NIST design descrip-
tion for the X9.31 random number generator [13] does not
specify how the block cipher key should be generated or
stored. However, vendors who wish to obtain FIPS certification
are required to produce a detailed public “security policy”
document describing their cryptographic implementations and
key management procedures. We performed a systematic
study of the security policies for products certfiying usage
the X9.31 random number generator made available on the
NIST web site [20] to understand how many vendors publicly
documented static or hard-coded keys that may render them
vulnerable to a state recovery attack.
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A. Background on FIPS certification

FIPS Publication 140-2 “Security Requirements For Cryp-
tographic Modules” [21] defines requirements for devices and
software that implement cryptography. FIPS 140-1 was orig-
inally released July 17, 1995, establishing the program, and
was superseded on May 25, 2001 by FIPS 140-2. Compliant
devices are eligible for certification under the Cryptographic
Algorithm Validation Program (CAVP), administered by NIST,
and The Cryptographic Module Validation Program (CMVP)
for which the CAVP is a prerequisite, administered by NIST
and the Communications Security Establishment (CSE) of
Canada. Once a device has been certified under the CMVP,
it is added to a list of approved devices that federal agencies
and other regulated bodies are allowed to use.

The annexes to FIPS 140-2 lists approved algorithms for
each of “Security Functions”, “Protection Profiles”, “Approved
Random Number Generators” and “Key Establishment Tech-
niques”. Annex C: Approved Random Number Generators
listed the ANSI X9.31 Random Number Generator with
AES and three-key 3DES between January 31, 2005 and
the most recent revision on January 4, 2016; variants of
the X9.17/X9.31 PRG using different block ciphers have
been listed as approved random number generators in FIPS
and NIST standards since at least 1992. In January 2011,
NIST published an advisory, NIST SP 800-131A, announcing
the transition away from smaller key lengths and weaker
cryptographic algorithms, including the impending deprecation
of the X9.31 RNG [22]. Currently, the only approved random
number generators approved for use are those listed in NIST
SP 800-90A, which was updated in June 2015 to remove Dual
EC DRBG.

B. Certified unsafe usage of the X9.31 PRG

We examined the security policy documents of all devices
certified under the CMVP that documented previous or current
use of the X9.31 PRG. NIST provdes a list of implementations
certified for historical random number generators.6 A single
FIPS validation certificate may cover multiple products and
versions. The scope of these certificates varied: in some cases
they validated a cryptographic module or a single product
and version, and in others they covered entire product lines
and operating systems. According to this list, FIPS has issued
2,516 certificates in total for products that implemented X9.31.
Of these, on July 13, 2017, 997 listed current support for X9.31
despite its official deprecation in January 2016. The remaining
certificates were only available in updated versions that had
removed details of historical X9.31 implementations. Of the
997 that indicated support for X9.31, 682 certificates from 288
vendors were validated for random number generation.

The certificates include a list of Critical Security Parameters
(CSP), which include access control, key and parameter gen-
eration, and zeroization policy. We also looked for language
elsewhere in the documentation mentioning the source of the
seed key and seed. 127 of the vendors did not mention the AES
key in the list of CSPs or elsewhere in the documentation.

6https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/
validation/validation-list/rng
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Fig. 3: Counting vulnerable implementations. We examined
the security policy documents from 288 vendors who had
been FIPS 140-2 certified for the X9.31 PRG for information
on how the seed key for the random number generator was
generated. For 44% of cases, there was no information on key
generation; for 52% the documents mentioned generating the
keys randomly, and the remaining 12 vendors, 4% of the total,
documented vulnerable behaviors such as hard-coded keys.

Since we are unable to determine whether the key was
generated securely, we exclude these from further study. This
left 161 vendors who did mention seed key generation in some
capacity.

We counted an X9.31 implementation as secure if the
documentation stated that the key and the seed were user-
generated, the output of another random number generator,
contained any discussion of specifying sufficient entropy for
the seed key, or a strategy to generate keys uniquely per
device or per boot. In the case of a user-generated key,
the onus would fall on the user to ensure that the key
is securely generated and rotated as necessary. We did not
study these cases further. The largest class of devices we
evaluated as safe generated the AES key on boot, by seeding
from a non-FIPS approved random number generator, most
commonly the Linux random number generator, instantiated
as /dev/urandom. As an example of language indicating
what we considered to be safe X9.31 key generation, the
InZero Gateway XB2CUBSB3.1 security policy states that the
“PRNG is seeded from /dev/urandom. . . this provides the
PRNG with 256 bits of entropy for the seed key” [23]. The text
includes additional commentary on the risk involved in using
a weak random number generator for the purpose of FIPS
validation. While urandom has had known vulnerabilities
stemming from failure to properly seed on first boot of some
classes of devices [24], we considered such usage “safe” for
the purposes of this analysis. As another example, the 2012
FIPS 140-2 security policy for the Juniper SSG 140, which
was certified for the X9.31 generator, states that for the “PRNG
Seed and Seed Key” “Initial generation via entropy gathered
from a variety of internal sources.” There were 149 certificates
(93% of the 161) in this class.

We counted an implementation as vulnerable to a state
recovery attack if the documentation stated that a single key
was used for the lifetime of a device, particularly if an external
attacker would be able to learn this key. Unsafe devices
had documentation indicating that the AES key was stored
statically in the firmware or flash memory and loaded at
runtime into the PRG. There were 12 vendors in this class,
covering 40 product lines. We list these products together with
the language used to describe seed key generation in Table I.
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Vendor Product Line Version Language Used X9.31 Removed

BeCrypt Ltd. BeCrypt Cryptographic Library 2.0 “Compiled into binary” 3.0
Cisco Systems Inc Aironet 7.2.115.2 “statically stored in the code” v8.0
Deltacrypt Technologies Inc DeltaCrypt FIPS Module “Hard Coded” N/A
Fortinet Inc FortiOS v4 4.3.17 “generated external to the module” 4.3.18
MRV Communications LX-4000T/LX-8020S v5.3.8 “Stored in flash” v5.3.9
Neoscale Systems Inc CryptoStor 2.6 “Static key, Stored in the firmware”
Neopost Technologies Postal Security Devices v28.0 “Entered in factory v30.0

(in tamper protected memory)”
Renesas Technology America AE57C1 v2.1012 “With the exception of DHSK and the

RNG seed, all CSPs are loaded at factory.”
TechGuard Security PoliWall-CCF v2.02.3101 “Generation: NA/Static”
Tendyron Corporation OnKey193 v122.102 “Embedded in FLASH”
ViaSat Inc FlagStone Core v2.0.5.5 “Injected During Manufacture”
Vocera Communications Inc. Vocera Cryptographic Module v1.0 “Hard-coded in the module” v2.0

TABLE I: FIPS 140-2 Security Policies Documenting X9.31 Implementations Potentially Vulnerable to State Recovery. Since
the X9.31 RNG was removed from FIPS 140-2 in January 2016, many vendors have published software updates to remove
X9.31 and updated their security policies accordingly.

C. Device-specific analysis

We were only able to gain access to firmware for one of
the products we identified as potentially vulnerable, a Fortinet
firewall. We give more details on our investigation in the next
section.

We contacted Cisco about X9.31 usage, and they confirmed
that X9.31 was used in Aironet 12.4-based branches for
access points and WISM modules and 4400 controllers using
version 7.0. They were unable to locate the source code or
confirm use of a hardcoded key, although they agreed with
our interpretation of the certification language. They informed
us that the 4400 controllers reached end of support in 2016,
the WISM modules reached end of support in 2017, and the
12.4-based branch of Cisco IOS software that supported X9.31
has also reached end of support at an unknown date. Another
family of access points used the 15.3 branch of IOS, which
uses NIST 800-90 and not X9.31. Cisco also told us that they
are not currently shipping any products that use X9.31.

The BeCrypt Cryptographic Library Version 2.0 documen-
tation states that the “RNG seed key” is “pre-loaded during
the manufacturing process” and stored as “compiled in the
binary”. Version 3.0 of the BeCrypt library no longer includes
the X9.31 PRG. When we contacted BeCrypt, they told us that
“Except in one case when we use the RNG key creation routine
we do not recycle the strong entropy output from one usage to
be the input to the next usage. Instead, we use fresh entropy.
In the one case where we recycle the strong entropy input, the
weak entropy input is actually strong entropy and the key is
generated programmatically at startup” and additionally that
the only fixed key relating to a RNG inside the FIPS module
is for self-test purposes.

The ViaSat’s FlagStone Core documentation states that the
key was “injected during manufacture”. The documentation
does not specify whether this key is device specific, although
it recommends that “RNG Keys and Seeds that are imported
into the FlagStone Core are generated or established using a
FIPS 140-2 approved or a FIPS 140-2 allowed method.” A
device-specific key would require a targeted attack.

The certification documentation for Neopost devices spec-
ifies that the hardcoded key is entered in the factory and
stored in tamper proof memory. A device-specific hardcoded

key stored in tamperproof memory would be quite difficult to
attack.

D. Open source implementations

We also examined the X9.31 implementations in OpenSSL
and the Linux kernel, but did not find evidence of hard-coded
keys other than for testing.

IV. DECRYPTING VPN TRAFFIC ON FORTIOS V4.3

The FIPS certification for FortiOS 4.3 states that the
X9.31 key is “generated external to the module”. We reverse-
engineered two versions of FortiOS and found that they used
the same hard-coded key for their X9.31 implementation,
which was then used as the system-wide random number
generator.

We demonstrate that knowledge of this key allows an
attacker to passively decrypt IPsec traffic from FortiOS v4. An
RNG state recovery attack is feasible using only the IKE or
TLS handshake nonces, and typically takes less than a second
of computation time on our hardware, after which the attacker
is able to guess the secret keys used to generate encryption
keys. We performed an Internet-wide scan for affected hosts,
and were able to carry out state recovery and private key
recovery on handshakes from our scan data.

A. History of FortiOS 4.x

FortiOS is a network operating system created by Fortinet
Inc. for their network security hardware devices and virtual
appliances. As of 2016, they were the fourth largest vendor by
market share according to the IDC Worldwide Quarterly Se-
curity Appliance Tracker [25]. Fortigate primarily specializes
in firewalls, intrusion detection systems and VPN gateways.
FortiOS is used widely across their product suite except for
client-side software packages.

FortiOS 4.0 was first released on February 20, 2009 for a
limited set of devices. Fortnet released three major versions,
supporting a number of them concurrently while sunsetting
older major versions. FortiOS 4.1 was released February 8,
2009, 4.2 in March 2010, and 4.3 on March 18, 2011. The
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X9.31 RNG was implemented in FortiOS version 4.3 (2011)
but is not present in FortiOS 5, released in November 2012.

Prior to our disclosure of the PRNG vulnerability in October
2016, the last release of FortiOS v4 was 4.3.18, released
August 6, 2014, with an end of support date of March 19, 2014
for devices compatible with FortiOS v5. In response to our
disclosure of the random number generation vulnerability [26],
Fortigate released version 4.3.19 of FortiOS in November
2016.

1) Vulnerabilities in FortiOS: On January 15, 2016, the
MITRE corporation posted CVE-2016-1909 [27] revealing
the presence of a hardcoded passphrase present in FortiOS
4.1.x and FortiOS 5.x as of October 2009, and all subsequent
releases. This passphrase gave a remote attacker SSH access to
the Fortimanager Access account for remote administration.
In a blog post in January 2016 [28], Fortinet stated that
“This was not a ‘backdoor’ vulnerability issue but rather a
management authentication issue... After careful analysis and
investigation, we were able to verify this issue was not due to
any malicious activity by any party, internal or external” and
that the issue had been patched in July 2014.

In August of 2016, a group calling themselves “The Shadow
Brokers” released a collection of malware tools and documen-
tation purportedly from an APT (advanced persistent threat)
actor known as “The Equation Group”. Among other things,
the leak contained a remote code execution exploit for FortiOS
v3 and v4 titled EGREGIOUSBLUNDER. The documentation
for the exploit included information on identifying FortiOS
versions based on HTTP headers. The collection also included
a malware payload for FortiOS (codename BLATSTING),
containing a module ‘tadaqueous’ that disables random num-
ber generation by hooking the function get random bytes, the
entrypoint to FortiOS’s X9.31 implementation [29]. We did
not find any evidence in the Shadow Brokers leak that The
Equation Group was aware of the vulnerability we found in
the PRG.

B. Static Analysis

We analyzed two implementations of FortiOS v4, the em-
bedded operating system for Fortigate’s network devices. The
first was firmware obtained from a filesystem and memory
dump of a FortiGate 100D Firewall, and the second was
a ‘virtual appliance’ (VM) running a different build of the
operating system. The two firmware images were nearly
identical, with minor variations due to the lack of hardware in
the virtual appliance, and minor variations in supported TLS
cipher suites. These differences would not have affected the
measurements described in Section V.

FortiOS is a GNU/Linux variant, with a customized shell
providing configuration capabilities and kernel modules im-
plementing hardware interfaces and cryptographic functions.
The kernel is Linux 2.4.37, the last release of the 2.4.x series
kernels released in December 2008, which reached end of life
in December 2011. While kernel 2.6.32 was available as of
the release of FortiOS v4, embedded device manufacturers
commonly chose to use the earlier kernels due to potential
performance improvements and incompatibilities in the load-

able kernel module (LKM) system. FortiOS v5 continues to
use the Linux 2.4.37 kernel.

Each firmware release contains files for symmetric multi-
processor systems, such as the FortiGate 100D we analyzed,
and for single processor systems.

C. The X9.31 Implementation

The X9.31 random number generator is implemented within
a kernel module that exports a Linux character device. At
boot time, the init process loads the module and replaces
/dev/urandom with a node corresponding to the X9.31
character device.

We reverse-engineered the kernel module providing the
X9.31 implementation in Listing 1 in Appendix A and found
the hard-coded AES key used for the RNG. The hard-coded
key was f3b1666d13607242ed061cabb8d46202. The
key used in both the firmware dump and virtual appliance was
the same. Although the documentation stated that the key was
“generated external to the module”, the key is the same one
used for the NIST test vectors [14] and appears to have been
hard-coded into the source code.

The PRNG implementation generates the timestamp using
a call to do gettimeofday() and produces a struct timeval
containing the 64-bit time to the nearest microsecond. This
struct is copied twice into a buffer to form a full 128-bit input
timestamp to the X9.31 generator.

D. The HTTPS Implementation

We also reverse-engineered the implementations of the
HTTPS server for the administration panel and the IKE/IKEv2
daemon used for VPNs.

The TLS server hello random consists of a four-byte times-
tamp followed by two raw blocks of X9.31 RNG output
truncated to 28 bytes, which permits a state recovery at-
tack. However, the TLS implementation does not seem to be
vulnerable to a straightforward key recovery attack because
it uses an OpenSSL-based daemon and uses the OpenSSL
RAND bytes() pseudo-random number generator to generate
the secret keys used in the TLS handshake. The system X9.31
generator is used only to generate the initial seed for the
OpenSSL PRNG and to generate the server hello random
nonce.

E. The IKE Implementation

The IKE daemon appears to be a modified variant of the
raccoon2 project, compiled with the GNU MP library. Unlike
the TLS implementation, all randomness used by the daemon
is output by /dev/urandom, and thus uses the X9.31 mod-
ule. We analyzed both the IKEv1 and IKEv2 implementations
to see if any fields in the handshake packets contained enough
raw output from the PRNG to recover the state.

In the IKEv1 implementation, the first block of
RNG output is used to generate the IKEv1 cookie
by hashing it together with IP addresses, ports, and
memory addresses. The cookie was generated as
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SHA1(0x2020||mpz d||src||dst||timestamp||nonce16).7
Here mpz d represents a pointer to the buffer used by the
linked gmp implementation that stores the remainder of the
data to be hashed. This appears to be a quirk of using gmp
types to store data, and not an intentional security measure
on the part of the system implementer. The address itself is
heap allocated, and was inconsistent across connections and
restarts. The timestamp is seconds since epoch.

In the IKEv2 implementation, the SPI field, the equivalent
of the IKEv1 cookie, is eight raw bytes of PRNG output.

In both IKEv1 and IKEv2, the next block of RNG output
was used to generate the handshake nonce, which was 16 bytes
long. This was generated immediately before the RNG output
blocks that are fed into the Diffie-Hellman exponentiation.

For the case of Diffie-Hellman key exchange with the 1024-
bit Oakley Group 2 prime, FortiOS v4 generates an exponent
using two consecutive blocks from the PRG. In the virtual
appliance’s implementation, random bytes are read directly
into the Diffie-Hellman exponent without modification. In
the case of hardware devices with a dedicated cryptographic
processor, the raw bytes of PRG output are fed along with
the prime and the generator into a system call that invokes
the cryptographic processor. The cryptographic processor de-
terministically transforms the exponent in a way that we did
not manage to reverse engineer, and outputs the result of the
modular exponentiation.

We were able to invoke this system call ourselves on
our hardware device to generate the Diffie-Hellman public
key exchange values and shared secrets from candidate PRG
blocks.

F. State recovery in IKEv1

The state recovery attack outlined in Section II-C requires
two blocks of RNG output and the AES key to recover the
state. The IKEv1 implementation gives us one full block of
output in the nonce, and one block that is hashed together with
a timestamp and nondeterministic pointers to create the cookie.
The timestamp has a resolution of a second, so we assume
it is known. However, the heap-allocated pointer provides
approximately 13 bits of entropy [30]. Rearranging Equation 2,
the first block of RNG output R0 that is fed into the hash
function to produce the cookie is D(D(R1)⊕E(T1))⊕E(T0)
where the second block of RNG output R1 is known, and
we estimate we need to brute force 29 bits of timestamps T0
and T1, as described in the next section. Thus an IKEv1 state
recovery attack based on the cookie would take around 242

hashes; which is entirely feasible. We found that IKEv2 state
recovery was more easily exploitable, and focused our efforts
on IKEv2 as described below.

The two blocks after the cookie and nonce are used to
generate the Diffie-Hellman key private key, so key recovery
would be straightforward after recovering the state.

G. State recovery in IKEv2

As discussed in Section II-E2, we need two consecutive
blocks of the RNG output, an approximation to the two times-

7We note the choice of SHA1 here over MD5 recommended in the RFC.

tamps used for the intermediate vectors, and the AES key in
order to recover the state. The FortiOS IKEv2 implementation
yields 1.5 consecutive blocks of raw RNG output in the IKEv2
handshake: half a block in the SPI field, and a full block in
the nonce. We learned the static key as described above by
reverse-engineering the source code. We use the capture time
of an incoming handshake to approximate the timestamps.
From these, we use the approach described in Section II-C
to recover the RNG state.

The difference between the receive time of the first
handshake packet received and the timestamp generated by
gettimeofday() in the RNG when it was called to gen-
erate the SPI cookie is dependent on the time taken by the
Fortigate device’s processor to execute the remainder of the
packet creation and sending routine after the call to generate
the timestamp, the time taken along the network to reach the
attacking machine, the time taken by the attacking machine to
process and report the packet, and clock drift. We found that
searching within a ten-second window, or about 224 guesses
for the first timestamp, worked well on our hardware as well
as scanned machines in the wild.

We used our instrumented logging system to measure the
time difference between successive calls to the PRNG for the
SPI and nonce fields that we needed to carry out state recovery
on the FortiGate 100D. We found an average of 145µs with a
standard deviation of 3.52µs.

This yields a total state recovery attack complexity on
similar hardware of about 224 · 25 = 229 timestamp guesses,
given complete uncertainty within 10 seconds for the first
block (224 guesses), and bounding the search space for the
second timestamp to within 3σ of the mean (25 guesses).

Experimentally, this can be completed for both the virtual
appliance or our hardware appliance in under one second on
12 cores of an Intel Xeon E5-2699 with parameters as above.
For an expanded search space of 100 microseconds for the
second timestamp as described in Section V, successful runs
completed in an average of 15 core minutes. Although we are
verifying against only half a block of raw output from the first
block, the reduced size of our timestamp search means that
the expected number of false positive matches in Equation 2
is small, at most 229/264 = 2−35.

H. State recovery in TLS

State recovery for TLS uses the 28 random bytes of the
server random as 1.75 consecutive raw output blocks from
the PRG. The first four bytes of the server random are a
timestamp that help us fix a starting point for our search.
Although we are only verifying Equation 2 with 1.75 blocks
of raw output, the reduced size of the timestamp search means
that the probability of a false positive match is small. For a
timestamp search space of 229 (see Figure 4), the expected
number of false positive matches is at most 229/296 = 2−67.

I. Recovering the IKEv2 Keys

Once we have recovered the PRG state from the SPI (block
R0 of output) and nonce (block R1 of output), we can
then wind forward the PRG, simultaneously guessing the two



10

following timestamps in order to recover two more blocks R2

and R3 that will be used to generate the Diffie-Hellman secret.
To obtain the first key block R2, we apply Equation 3 and then
wind forward the generator, again guessing the next timestamp
as in Equation 1 to generate R3.

We calculate gR2||R3 mod p (where || denotes concatena-
tion) and check this value against the Diffie-Hellman public
value in the IKE SA INIT. A match confirms our guesses for
the two timestamps and the Diffie-Hellman private value, that
can then be used to calculate the shared secret.

We measured the time difference between the nonce PRG
timestamp and the first key block PRG timestamp and found
a mean of 154.4µs with a standard deviation of 32.2µs.
We search 3σ out from the average to find this timestamp,
requiring a search over 28 timestamps. We also measured
the average difference between the first and second calls to
the PRG at 18.3µs with a standard deviation of 4.53µs for
the Fortigate 100D and 1141µs for the virtual appliance over
10 pairs of consecutive calls to the PRG. Since the two key
blocks are generated with a single read() system call, we
set our search space for each ‘second’ key PRG block to
begin 18 microseconds after the first, searching outwards to a
maximum of 32 microseconds after, corresponding to 3σ, or
25 timestamps. Combining the simultaneous search for the two
timestamps, the key recovery stage requires a search space of
28 · 25 = 212 timestamps.

Since the FortiGate 100D hardware device offloads modular
exponentiation to a proprietary Fortigate ASIC (FortiASIC
CP8) that uses a transformation we weren’t able to reverse-
engineer, our brute force code makes a system call to the ASIC
to test each candidate pair of RNG outputs. Over 30 trials, the
average time to carry out this part of the attack was 3.88s on
the hardware device itself.

J. Recovering Traffic Keys

Once we have recovered the victim device’s public key
value, we can make another call to the ASIC with our
recovered PRG inputs and the other side’s public key exchange
value to recover the IKEv2 Phase 1 Diffie-Hellman shared
secret. For IKEv2, once the Diffie-Hellman shared secret has
been computed, all of the information needed to compute
the SKEYSEED value and derive the symmetric encryption
keys is present in the clear in the IKE SA INIT messages
exchanged by both the initiator and responder. We computed
the SKEYSEED as described in Section II-E2 and verified full
passive decryption against traffic to our FortiGate 100D.

V. MEASUREMENTS

We used ZMap to perform Internet-wide scans on port 443
for HTTPS and port 500 for IKEv2 to measure the population
of vulnerable Fortinet devices. Active scanning is an imperfect
measure of the scope of this type of vulnerability for multiple
reasons. It does not reflect the amount of traffic vulnerable
hosts actually receive. In addition, as we note below, most
well-configured hosts would be unlikely to expose either port
on a public IP address.

TABLE II: X9.31 state and key recovery in the wild

HTTPS hosts (TLS 1.0/port 443) 29,709,242
. . . with default Fortinet certificate 114,172

. . . and successful state recovery 23,554
. . . with known FortiOSv4 ETag 2,336

. . . and successful state recovery 2,265

IKEv2 hosts (port 500) 7,743,876
. . . with 128-bit nonces 50,285

. . . and private key recovery 7
. . . with TLS nonce state recovery 152

. . . and non-static IKE parameters 17
. . . and private key recovery 7

A. HTTPS

We used several types of HTTP and HTTPS metadata to
identify affected Fortigate hosts in the wild. Our scans targeted
hosts that exposed the administration panel for the device on
a public IPv4 address on port 443.

a) TLS version and cipher suites: In April 2017 we
probed the full public IPv4 address space on port 443 for pub-
licly accessible HTTPS hosts. With each host we performed
a TLS/SSL handshake. Our scan connected over TLSv1.0,
the version supported by the vulnerable devices, and offered
the same list of cipher suites that our test device supported.
We give the list of cipher suites supported by FortiOSv4 and
advertised in our scans in Table III in Appendix B. Our scan
successfully negotiated a HTTPS connection with 29,709,242
hosts. (This is lower than the roughly 40 million HTTPS
hosts seen in Internet-wide scans that offer a wider variety
of SSL/TLS versions and cipher suites.)

b) Server certificate common name: The default config-
uration for FortiOS v4 is to serve a self-signed certificate with
the model number and serial number in the common name field
and ‘Fortinet’ in the organizational field. While this does not
identify the firmware or build number for a host, it provided
a subset of hosts to test further for the vulnerability. We
found 114,172 hosts in our scan whose certificate contained
a matching organization field. The certificate common names
for these hosts listed 3,379 unique model numbers.

We were able to successfully mount the state recovery attack
against 23,554 of these hosts, corresponding to 20.6% of those
with default Fortinet certificates. We initially searched a 10
second window around the local timestamp of the first packet
arrival time, and were able to recover state for 16,418 hosts.
We were able to perform state recovery for an additional 7,136
hosts by searching out from the timestamp in the received
server random.

Figure 4 shows the distribution of the number of timestamps
guessed for successful state recoveries. We searched a 100µs
window between successive timestamps in these trials to
account for any hardware that may have been slower than
the mid-range FortiGate 100D we tested with, but did not
observe any differences beyond 35µs among our successful
state recoveries. We plot the distribution of gaps between
timestamps in Figure 6.

c) Specific HTTP files: The the administration panel
of our hardware device contained an image file located at
/images/logon.gif. In our HTTPS scan, after success-
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Fig. 4: Brute force work for state recovery. We plot the
distribution of the number of timestamps we were required to
guess for each successful TLS state recovery. The average
number of guesses we required was 224.4 with a standard
deviation of 223.8.

fully negotiating the HTTPS handshake, we then sent HTTP
GET request for this URL. 605,950 hosts responded with
HTTP OK, and a corresponding image. (The others returned
a 404 error). We were unable to automatically validate which
images corresponded to Fortigate devices based on image data
alone, thus we used the below matching techniques to further
narrow candidates.

d) ETag headers: The HTTP ETag header gives a value
associated with resources on an HTTP server, and used for
web cache validation along with conditional requests [31].
The RFC specifies that the value of the header “is data
known only to the server”. In order to attempt to fingerprint
devices running vulnerable firmware versions, we matched
ETag headers obtained from requests to the responding hosts
against a list of ETags corresponding to FortiOS v4 devices.

The Equation Group leak [32] contained a list of pairings
between ETag suffixes and device and firmware-build pairs.
The leaked list is far from complete, but 168 entries out of the
total 440 corresponded to 9 models running 26 different builds
of FortiOS v4. The leak additionally contained a memory
address for each entry, used for the Egregious Blunder exploit
with which it was packaged. The ETag for our FortiGate 100D
(5192dbfd) was not included in the database, so we added
it to our search.

Of 655,878 HTTP hosts responding with an ETag, 2,336
gave an ETag identified as FortiOS v4. The state recovery
attack was successful for 2,265 (97%) of these. 1,535 of
the hosts with matching ETags presented HTTPS certificates
other than the default Fortigate certificate. State recovery was
successful for all the devices matching the ETag for our
hardware device.

e) Limitations: We note that devices responding to our
HTTPS scans have been configured to expose the administra-
tion panel on a public IPv4 address, which is not the default
configuration and increases the vulnerability of the devices.
(On our test hardware, the admin panel was not exposed at all
by default, and we had the option to configure an interface to
expose it on setup.) The total population of vulnerable hosts
is likely higher than the population visible to our scan.

Fig. 5: Initial timestamp offset. We calculated the difference
between the time a packet containing the TLS Server Hello
was received and the timestamp used to seed the first PRNG
block for the packet from successful state recovery trials in
the wild. We brute force searched for this timestamp within
a 10-second window of our local timestamp. If that was
unsuccessful then we also searched from the time indicated
in the server random. The average difference is 0.11 seconds
with a standard deviation of 0.59 seconds.

A well equipped adversary could construct a larger database
of ETags and by doing so enable further firmware version
fingerprinting from the large set of hosts. This technique can
also be used for other manufactures, a number of whom also
insert a model-firmware identifier in header.

B. IKEv2

We also used UDP scans on port 500 to initiate IKEv2
handshakes for the full IPv4 space. However, the metadata
available in an IKEv2 connection is more limited than for
HTTPS.

a) HTTPS Admin Panel: Of the 23,554 HTTPS hosts in
the previous section against which state recovery from the TLS
nonce on port 443 was successful, 152 responded to IKEv2
handshake requests on port 500. Of these hosts, 135 always
returned a single, identical, static common nonce and key
exchange for every connection. These devices were located
within the Chinanet AS and their SSL/TLS certificates listed
a variety of Fortinet model numbers. From the remaining 17
hosts whose nonces and key exchanges were freshly generated
on new connections, our key recovery attack was successful
against 7.

b) Cipher support: In our scans, we sent handshake
requests with proposals requesting the modp Diffie-Hellman
groups from sizes 768 to 2048, encryption algorithms of AES,
3DES and DES, SHA-1 or SHA-2 for the hash algorithm and
either preshared key or RSA authentication. These proposals
were chosen because they were supported in FortiOS v4. We
give the list of cipher suites we offered in our scan in Table V
in Appendix B. We received 7,743,876 responses.
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Fig. 6: Subsesquent timestamp offset. We calculated the
difference between the first and second timestamps used to
generate the RNG blocks for the TLS nonce. This value
was brute forced from within a range of between zero and
one hundred microseconds. The average difference is 19.2
microseconds with a standard deviation of 10.1 microseconds.

c) Nonce size: FortiOS v4’s IKEv2 implementation uses
128-bit nonces. From our successful IKEv2 handshakes above,
50,285 had 128-bit nonces. We attempted state and key
recovery from our handshakes with all of these hosts, and
were able to successfully recover the Diffie-Hellman shared
secret in the handshake we negotiated for 7 hosts using the key
recovery attack we describe above. This included 4 hosts that
weren’t seen in the population of vulnerable HTTPS hosts. We
hypothesize that most of the publicly visible IKEv2 responders
with 128-bit nonces are not vulnerable Fortigate products,
and that most VPNs are configured as site-to-site tunnels that
would not be visible in our scans.

d) Limitations: The number of IKE responses we receive
should be treated as a lower bound, since many VPNs are
configured as site-to-site tunnels, or filter based on source IP
and are invisible to scans from unknown hosts.

C. Timestamp Statistics

Our state recovery attack was configured to examine a
window of ten seconds around the local timestamp of when
we received the packets during our scan. In Figure 5, we plot
the distribution of the first recovered timestamp relative to the
local timestamp at the time we received the first packet for
24,000 successful state recovery attacks against TLS nonces
in the wild. In nearly all cases, the first timestamp recorded in
the RNG state was less than one second away from the local
timestamp of our scanning machine at the time the packet was
received. In Figure 6, we plot the difference between the first
and second timestamps used to generate the TLS nonce; we
brute forced up to an offset of 100 µs after the first timestamp,
but all our observed state recoveries had a gap of no more than
40 µs between the first and second timestamps.

VI. RELATED WORK

A. Cryptanalysis of RNG designs

There is a long history of cryptanalysis of practical pseu-
dorandom number generator designs in the literature. Kelsey,
Schneier, Wagner, and Hall [8] enumerate classes of attacks
on PRNGs, and note several design flaws and vulnerabili-
ties against PRNG designs, including the key compromise
vulnerability in X9.17/X9.31 RNG that we consider in this
paper. Gutterman, Pinkas, and Reinman [33] analyzed the
Linux random number generator in 2006, and Dorrendorf,
Gutterman, and Pinkas [34] analyzed the Windows random
number generator in 2009. Dodis et al. [9] defined a notion
of recovery from state compromise for a PRNG, showed
that the Linux random number generator did not satisfy this
definition, and showed that there were inputs that would
cause it to fail to recover from state compromise and would
mislead the entropy estimation function. Michaelis, Meyer,
and Schwenk [35] analyzed Java random number generation
implementations and noted several vulnerabilities, including a
vulnerability in Android.

B. Random number generation failures

Multiple types of random number generation failures have
been observed in the wild.

One category of RNG failures in cryptographic practice
appear to be due to failure to properly seed a random number
generator before use, or seeding with poor-quality inputs.
Famously, between 2006 and 2008, the Debian OpenSSL
random number generator incorporated almost no entropy into
its state. [2] In 2012, Heninger et al. discovered a boot-time
failure of the Linux random number generator to properly in-
corporate entropy sources on embedded and headless systems;
this flaw resulted in them being able to compute RSA private
keys for 0.5% of TLS hosts and DSA private keys for 1.06% of
SSH hosts in 2012 [24]. Lenstra et al. [36] performed a similar
study of public keys collected from the internet in 2012, and
were able to compute RSA private keys for 0.3% of HTTPS
hosts and a pair of PGP users. In 2016, Hastings, Fried, and
Heninger [37] performed a follow-up study that found low
to nonexistent software patching rates for systems affected
by the 2012 RNG flaws. Bernstein et al. [38] were able to
factor 184 keys from a sample of approximately 2 million
smartcard-generated RSA keys from the Taiwanese “Citizen
Digital Certificate” smartcard ID system. They hypothesized
that the failures were due to a flawed hardware random number
generator on some smartcards combined with a failure to
whiten raw hardware RNG outputs. Kadianakis et al. [39]
performed a similar analysis on the 3.7 RSA public keys of Tor
relays, finding 10 relays with shared RSA moduli and 3,557
relays with shared prime factors.

Other types of system failures can result in repeated states
or outputs in RNG implementations. Ristenpart and Yilek [40]
show that virtual machine snapshots can result in crypto-
graphic failure due to implementation flaws in random number
generators. A 2013 vulnerability in the Android SecureRan-
dom resulted in a number of Bitcoins stolen from Android-
based wallets due to repeated DSA signature nonces [41].



13

C. Intentional RNG backdoors

A further category of failures are due to designs with
intentional weaknesses. Young and Yung [42] introduced the
concept of kleptography, the design of cryptosgraphic chemes
with hidden backdoors. They later described a scheme for
introducing such a backdoor into discrete log problem based
cryptosystems [43].

In a 2013 article published on the Snowden leaks, the NY
Times and Pro Publica pointed to the NIST-standardized Dual
EC DRBG as a cryptographic standard that had been subverted
by the NSA as part of a general program to influence stan-
dardization processes, although the original source document
naming Dual EC has not been published. In the wake of
these accusations, NIST removed support for the Dual EC
DRBG algorithm from its standards. However, this was not
the first time that the possibility of a backdoor in the Dual
EC DRBG had been raised. In 2006, Brown [44] noted that
the indistinguishability proof for the NIST-standardized Dual
EC DRBG relies on a random Q parameter. Shumow and
Ferguson [45] noted that the design of the Dual EC DRBG
admits a kleptographic backdoor. By generating parameters
such that there exists an integer d where dQ = P , the
kleptographer can recover the state of the DRBG by observing
32 consecutive bytes of output. Checkoway et al. [3] analyze
how an unknown attacker inserted code into Juniper ScreenOS
to exploit the presence of the backdoor in the Dual EC DRBG
that would allow passive decryption of IPsec connections.
Dodis et al. [15] formally model backdoored random number
generators, design backdoored PRNGs with strong indistin-
guishability properties, and evaluate countermeasures against
backdoors.

VII. DISCUSSION

A. NSA decryption capabilities

Classified NSA documents leaked by Edward Snowden
and published by Der Spiegel [46] suggest that the NSA
has passive decryption capabilities against some fraction of
IPsec, TLS, and SSH traffic. Proposed explanations for these
capabilities include the NSA performing 768-bit and 1024-bit
discrete log precomputations for widely used Diffie-Hellman
primes [47] (Boudot [48] points out that a 768-bit discrete
log precomputation may have been feasible for the NSA as
early as the year 2000), backdoored random number generation
standards such as the Dual EC DRBG [16], [3], and software
exploits and malware (“implants”).

We suspect the reality is a combination of these techniques
customized to individual vendors’ vulnerabilities. Our paper
explores another feasibly exploitable cryptographic vulnera-
bility that may explain some decryption capabilities.

While a compromised random number generator design
would seem like an appealing avenue to inject or discover
vulnerabilities in cryptographic implementations, the Dual EC
DRBG just does not seem to have been implemented widely
enough to explain decryption capabilities in more than a small
handful of products. (The exceptions we are aware of are the
RSA BSAFE library, and Juniper ScreenOS.) By contrast, the
X9.17/X9.31 PRG has been ubiquitous for decades.

B. Ease of exploitation

We note that our attacks in this paper against the X9.31
PRG were significantly less computationally expensive to
carry out than many of the attacks against Dual EC in TLS
measured by Checkoway et al. [16]. This is because the most
efficient attacks against Dual EC require 32 bytes of raw PRG
output, and the effort required to exploit the backdoor grows
exponentially as the amount of raw PRG output available to the
attacker decreases. In contrast, because successive timestamps
do not have very much entropy, an efficient attack against
the X9.31 PRG with AES for the block cipher that uniquely
recovers the state would be possible with 20 bytes or even
fewer of raw output. Checkoway et al [3] note that when
Juniper replaced the X9.31 PRG with Dual EC in their
ScreenOS implementation, they increased the length of the
nonces used in the IKE handshake from 20 bytes to 32 bytes,
thus permitting efficient passive exploitation of the Dual EC
backdoor. Efficient Dual EC exploitation would not have been
possible without this increase in the nonce length.

C. NOBUS and symmetric backdoors

As we note in the introduction, the vulnerability we exploit
in the X9.17/X9.31 PRG is by definition not a “NOBUS” back-
door because it is symmetric, and is thus both detectable and
exploitable by any party who can gain access to a static key
used by some device for the PRG through reverse-engineering,
physical access, or similar. This is in contrast to the case of the
Dual EC PRG, where only the party who generated the elliptic
curve points used as parameters for the PRG knows whether
they contain a backdoor. However, an implementation of the
X9.17/X9.31 PRG that uses a vulnerable static key could still
increase the cost of exploitation to a chosen level of difficulty
by increasing the granularity of the timestamps. The Fortinet
systems we analyzed used gettimeofday which typically
has at most µs resolution. An implementation using RDTSC to
obtain nanosecond granularity instead would likely have put
the attack outside easy reach of modest attackers.

D. Failure of the standardization process

The failure of the NIST and FIPS standardization process
to protect against a long-known vulnerability in an approved
random number generator is surprising. The observation that
the seed key must remain secret in the X9.17/X9.31 design
was first noted almost two decades ago, and yet none of the
descriptions of the algorithm we could find mentioned the
importance of generating an unpredictable key.

E. Concerns about other PRG implementations

In positive news, the remaining approved PRG designs in
NIST SP 800-90A appear to be based on sounder footing, both
in practice and in theory. However, this analysis assumes that
cryptographic implementations are sound. Cipher-based PRGs
appear specifically vulnerable to state recovery attacks when
the cipher key is known or obtained by an attacker. This raises
the possibility that a careless or malicious implementation
of a modern PRG such as NIST’s CTR DRBG [5] could
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be implemented in such a way that the key is not routinely
updated, which might allow for state recovery attacks. These
attacks are problematic, as an observer without knowledge of
the key would see output that is statistically indistinguishable
from a correct implementation.
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APPENDIX A
THE FORTIOS V 4 X9.31 INITIALIZATION ROUTINE

Listing 1: The X9.31 Initialization Routine.
1 int initialize_X931()
2 {
3 char rng_state[16];
4 char timestamp_buffer[16];
5 int aes_key[4];
6 int result = key_set;
7 aes_key[0] = 0x6D66B1F3;
8 aes_key[1] = 0x42726013;
9 aes_key[2] = 0xAB1C06ED;

10 aes_key[3] = 0x0262D4B8;
11 if ( !key_set )
12 result = set_aeskey(aes_key);
13 if ( !state_set )
14 {
15 // initial state setting removed for clarity
16 ...
17 save_state(rng_state);
18 fill_timestamp(timestamp_buffer);
19 result = x931(&timestamp_buffer, output_buffer,
20 rng_state, 16);
21 }
22 return result;
23 }

APPENDIX B
SUPPORTED CIPHER SUITES IN FORTIOSV4

TABLE III: Supported TLS Cipher Suites in FortiOS v4

TLS DHE RSA WITH AES 256 CBC SHA
TLS DHE RSA WITH CAMELLIA 256 CBC SHA
TLS RSA WITH AES 256 CBC SHA
TLS RSA WITH CAMELLIA 256 CBC SHA
TLS RSA WITH 3DES EDE CBC SHA
TLS DHE RSA WITH AES 128 CBC SHA
TLS DHE RSA WITH SEED CBC SHA
TLS DHE RSA WITH CAMELLIA 128 CBC SHA
TLS RSA WITH AES 128 CBC SHA
TLS RSA WITH SEED CBC SHA
TLS RSA WITH CAMELLIA 128 CBC SHA
TLS RSA WITH RC4 128 SHA
TLS RSA WITH RC4 128 MD5

TABLE IV: Supported IKEv1 Parameters in FortiOS v4
Cipher PRF Group Authentication

DES MD5 DH 768 PSK
3DES SHA1 DH 1024 RSA
AES-128 SHA256 DH 1536
AES-192
AES-256

TABLE V: Supported IKEv2 Parameters in FortiOS v4
Cipher PRF MAC Group

DES SHA256 SHA256 DH 768
3DES SHA1 SHA1 DH 1024
AES-128 MD5 MD5 DH 1536
AES-192 DH 2048
AES-256


