
Project Almanac: A Time-Traveling Solid-State Drive

Xiaohao Wang, Yifan Yuan, You Zhou, Chance C. Coats, Jian Huang
Systems and Platform Research Group

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

jianh@illinois.edu

Abstract

Preserving the history of storage states is critical to ensuring
system reliability and security. It facilitates system functions
such as debugging, data recovery, and forensics. Existing
software-based approaches like data journaling, logging, and
backups not only introduce performance and storage cost,
but also are vulnerable to malware attacks, as adversaries
can obtain kernel privileges to terminate or destroy them.

In this paper, we present Project Almanac, which includes
(1) a time-travel solid-state drive (SSD) named TimeSSD that
retains a history of storage states in hardware for a win-
dow of time, and (2) a toolkit named TimeKits that provides
storage-state query and rollback functions. TimeSSD tracks
the history of storage states in the hardware device, without
relying on explicit backups, by exploiting the property that
the flash retains old copies of data when they are updated
or deleted. We implement TimeSSD with a programmable
SSD and develop TimeKits for several typical system ap-
plications. Experiments, with a variety of real-world case
studies, demonstrate that TimeSSD can retain all the storage
states for eight weeks, with negligible performance overhead,
while providing the device-level time-travel property.

CCS Concepts

• Computer systems organization → Secondary stor-

age organization; • Software and its engineering→ File

systemsmanagement; Secondary storage; • Security and
privacy→ File system security.

Keywords

solid-state drive, time travel, firmware-isolated logging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00
https://doi.org/10.1145/3302424.3303983

ACM Reference Format:

XiaohaoWang, Yifan Yuan, You Zhou, Chance C. Coats, Jian Huang.
2019. Project Almanac: A Time-Traveling Solid-State Drive. In Four-
teenth EuroSys Conference 2019 (EuroSys ’19), March 25–28, 2019,
Dresden, Germany. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3302424.3303983

1 Introduction

Retaining past storage states enables users to recover detailed
information about updates in storage systems. This is useful
for many purposes, such as debugging, data recovery and
rollback, forensics, and error tracking [6, 11, 38, 39].

Prior approaches rely on a variety of software-based tech-
niques, such as journaling, logging, checkpointing, and back-
ups. These techniques have become essential components
of a vast majority of storage systems. However, they suffer
from serious issues that significantly affect system reliability
and security. To be specific, software-based solutions are
vulnerable to malware attacks that can terminate the data
backup processes or destroy the data backup itself. For in-
stance, encryption ransomware can obtain kernel privileges
and destroy data backups in order to prevent victims from
recovering their encrypted data [14]. Furthermore, these
software-based techniques inevitably impose storage over-
head and additional I/O traffic [35, 39, 47].
A more lightweight and secure approach is desired, that

retains the storage states and their lineage, without relying
on software-based techniques, and without incurring over-
head. In this paper, we present a time-travel SSD (TimeSSD)
that transparently retains storage states in flash-based stor-
age devices, and maintains the lineage of states. TimeSSD
enables developers to retrieve the storage state from a previ-
ous time, creating a time-travel property. We also present a
toolkit called TimeKits which supports storage-state query
and rollback, for developers to exploit the firmware-isolated
time-travel property.

Flash-based SSD is an ideal candidate for TimeSSD for four
reasons. First, since flash pages cannot be written without
being erased, modern SSDs perform out-of-place updates
to reduce the overhead generated by expensive erase opera-
tions. The out-of-place update routine inherently supports
logging functionality since old versions of data are not imme-
diately erased [1, 10, 13]. Second, the SSD has to run garbage
collection (GC) to reclaim obsolete data for free space. With
a slight modification to the GC algorithm, we can reclaim

https://doi.org/10.1145/3302424.3303983
https://doi.org/10.1145/3302424.3303983
https://doi.org/10.1145/3302424.3303983

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

older versions of storage state in time order. Therefore, we
can maintain the lineage of storage states in an SSD by keep-
ing track of older versions of data. Third, the SSD firmware
is isolated from the operating system (OS) and upper-layer
software [2, 14]. The isolated firmware has a much smaller
Trusted Computing Base (TCB) than upper-level systems
software, which is less vulnerable to malware attacks [5, 38].
It provides a last line of defense for protecting user data,
even if the host OS is compromised. Lastly, SSDs have be-
come prevalent in a vast majority of storage systems driven
by their significantly increased performance and decreased
cost [37, 41].

TimeSSD is a lightweight firmware-level solution to fulfill
the time-travel property in the hardware device. It balances
the tradeoff between the retention time of past storage states
and the storage performance by estimating the GC overhead.
TimeSSD can dynamically adjust retention duration accord-
ing to application workload patterns, while still enforcing a
guarantee of a lower bound on the retention duration (three
days by default). To further retain past storage state for a
longer time, TimeSSD compresses the storage state during
idle I/O cycles. Our study with a variety of storage work-
loads, collected from both university and enterprise comput-
ers, demonstrates that TimeSSD can retain storage state for
up to eight weeks, with minimal performance overhead.

To facilitate the retrieval of storage states, TimeSSD lever-
ages the available hardware resources in commodity SSDs,
such as the out-of-band (OOB) metadata of each flash page
to store the reverse mapping from physical page in flash chip
to logical page in the file system. It uses back-pointers to
connect the physical flash pages that map to the same logi-
cal page, which enables TimeSSD to maintain the lineage of
storage states in hardware. All OOB metadata operations are
performed in SSD firmware, they are also firmware-isolated
from upper-level software. To accelerate retrieving storage
states, TimeSSD utilizes the internal parallelism of SSDs to
parallelize queries among multiple flash chips.

Based on this time-travel property, we develop TimeKits,
a tool that can answer storage state queries in both back-
ward (e.g., what was the storage state a few hours ago?) and
forward (e.g., how has a file been changed since some prior
state?) manner. These basic functionalities enable features,
such as protecting user data against encryption ransomware,
recovering user files, retrieving update logs, and providing
an evidence chain for forensics.
Project Almanac utilizes this firmware-level time-travel

property to achieve the same goals as conventional software-
based solutions, in a transparent and secure manner, with
low performance overhead. Overall, we make the following
contributions:

• We present a time-travel SSD, named TimeSSD, which
retains past storage states and their lineage in hardware,
in time order, without relying on software techniques.

• We present a toolkit, named TimeKits, to exploit the
firmware-isolated time-travel property of TimeSSD. It sup-
ports rich storage-state queries and data rollback.

• We quantify the trade-off between retention duration of
storage states versus storage performance. We propose an
adaptive mechanism to reduce performance overhead for
TimeSSD, while retaining past storage states to a bounded
window of time.

We implement TimeSSD in a programmable SSD, and de-
velop TimeKits for a few popular system functions, such
as data recovery and log retrieval of file updates. We run
TimeSSD against a set of storage benchmarks and traces col-
lected from different computing platforms. Our experimental
results demonstrate that TimeSSD retains the history of stor-
age states for up to eight weeks. TimeSSD fulfills these func-
tions with up to 12% performance overhead. We also apply
TimeSSD to several real-world use cases, and use TimeKits
to retrieve past storage states or conduct data rollback , The
performance results also show that TimeKits can accomplish
the storage-state queries and data rollback instantly.

The rest of the paper is organized as follows: § 2 explains
the background and motivation of this work. The design and
implementation of Project Almanac are detailed in § 3 and
§ 4 respectively. We present the evaluation in § 5. We discuss
the related work in § 6 and conclude the paper in § 7.

2 Background and Motivation

In this section, we briefly introduce the technical background
of SSDs, then motivate our Project Almanac with a few real-
world case studies.

2.1 Technical Background on SSDs

Solid-state drives are widely used in various computing plat-
forms as they provide orders-of-magnitude better perfor-
mance than HDDs with a price that is approaching that of
HDDs [31, 37, 41, 44]. Rapidly shrinking process technology
has also allowed us to boost SSD performance and capacity,
accelerating their adoption in commodity systems.

An SSD has two major components, as shown in Figure 1:
a set of flash memory chips, and an SSD controller. Each
SSD has multiple channels, where each channel can inde-
pendently receive and process read and write commands to
flash chips. Within each chip, there are multiple planes. Each
plane is further divided into multiple flash blocks, each of
which consists of multiple flash pages.

Due to the nature of flash memory, SSDs can read and
write only at page granularity. Furthermore, a write can
only occur to a free page. Once a free page is written, that
page is no longer available for future writes until that page
is first erased and its state reset to free. Unfortunately, the
erase operation can be performed only at block (which has
multiple pages) granularity, and it is time-consuming. Thus,
a write operation is issued to a free page that has been erased

Project Almanac: A Time-Traveling Solid-State Drive EuroSys ’19, March 25–28, 2019, Dresden, Germany

flash flash flash flashflash flash flash flash

Channel-0

flash flash flash flashflash flash flash flash

Channel-1

flash flash flash flashflash flash flash flash

Channel-2

flash flash flash flashflash flash flash flash

Channel-N

Embedded
Processor

RAM

Flash
Controller

Flash
Controller

Flash
Controller

Flash
Controller

Internal Bus

SSD Controller/Firmware

B
lo

ck
I/

O
In

te
rf

ac
e

Block I/O
Access

Figure 1. The architecture of an SSD.

in advance (i.e., out-of-place write), rather than issuing an
expensive erase operation for every write. Because of out-of-
place writes, an SSD employs indirections for maintaining
the logical-to-physical address mapping. Out-of-place writes
mean that each time a page is updated, the old version of
the page is simply marked as invalid. And garbage collection
(GC) will be performed later to reclaim it. The GC process
runs once the number of free blocks is below a threshold in
order to clean up invalid pages. The GC process will scan
the SSD blocks, picking one candidate for cleaning. Then it
will migrate any valid pages in the candidate block to a new
free block, and when finished, it will erase the candidate
block thereby freeing its pages for future writes. An SSD
inherently preserves past storage states, which can be exploited
to implement the time-travel property within firmware. We
will discuss the details in § 3.

Since each block has limited lifetime, modern SSDs also
havewear-leveling support to prolong SSD lifetime by evenly
distributing write and erase to all blocks. To achieve wear-
leveling, infrequently used block will be periodically moved
so these blocks with low erase count can be used to reduce
the stress of frequently erased blocks. The indirect mappings,
wear-leveling and GC are all managed by the Flash Transla-
tion Layer (FTL) in SSD firmware.
To handle the FTL, SSD controllers are usually equipped

with embedded processors and RAM. The embedded proces-
sors in SSD controllers help with issuing I/O requests, trans-
lating logical addresses to physical addresses, and handling
garbage collection and wear-leveling. To exploit the massive
parallelism of flash chips, the embedded processor may have
multiple cores. For instance, the MEX SSD controller used in
Samsung SSDs [33, 40] has a 3-core processor running at 400
MHz. The SSD controller has multiple channels and issues
commands to perform I/O operations in different channels
in parallel. These hardware components available in modern
SSDs provide the essential resources to meet the requirements
(see details in § 3) of Project Almanac.

2.2 Motivation Examples: Why TimeSSD

In this section, we will use several use cases to show the ben-
efits of the hardware-isolated time-travel property provided

by TimeSSD, and explain how it can be leveraged to provide
better security for flash-based storage systems.

Storage Security: Durability of user data is a major de-
sign concerns in secure storage systems. To achieve this,
storage systems have developed techniques such as journal-
ing [29, 35] and data backups [7, 42] for decades. However,
they still suffer from malware attacks today. If malware man-
ages to gain administrator privileges, it can execute kernel-
level attacks to destroy both local and remote data backups.
Take the WannaCry encryption ransomware for exam-

ple. It quickly infected hundreds of thousands of computers
across 150 countries in less than a week after it was launched
in May 2017 [43]. Encryption ransomware like WannaCry
destructively encrypts user files. To defend against this, prior
work has proposed several detection approaches [19, 34, 46].
However, they kick in only after some data has already been
encrypted. Furthermore, ransomware can use kernel priv-
ileges to destroy backups [14]. Therefore, software-based
approaches do not offer sufficient protection.
Hence, it is natural to turn to a hardware-assisted ap-

proach. TimeSSD provides firmware-level time-travel prop-
erty by retaining the past storage state in the storage de-
vice. Therefore, TimeSSD can recover user data, even after it
has been encrypted or deleted by malware. The firmware-
assisted approach adopted by TimeSSD has two advantages.
First, it makes the time-travel property firmware-isolated
to malware. Second, it has a much smaller TCB, compared
to the OS kernel and other software-based approaches, and
thus is less vulnerable to malware attacks.

Data Recovery in File Systems: An important function-
ality of file systems is to recover the system and user data
upon system crashes and failures. To achieve this, software-
based tools like data journaling have been proposed. How-
ever, journaling introduces a significant performance over-
head, due to the extra write traffic [35].

TimeSSD transparently retains the lineage of the past stor-
age states in SSDs. As TimeSSD retains the history of both
metadata (e.g., inode in file systems) and data for a window
of time, it allows developer to roll back a storage system to
a previous state (at a specific time in the past) with minimal
software involvement. Moreover, TimeSSD leverages the in-
trinsic out-of-place write mechanism in SSDs to retain past
storage state, avoiding the redundant writes generated by
the software-based journaling approach.

Storage Forensics: Digital storage forensics have been
widely used in both criminal law and private investigation,
such as criminal identification and the detection of unautho-
rized data modification [32]. Storage forensics need to recon-
struct the original sequence of events that led to the incident.
However, it is challenging to collect trusted evidence and
to reconstruct the history of events. Due to insufficient evi-
dence, incomplete recovery of events, or incomplete chronol-
ogy of events, reconstruction of evidence may be incomplete
or incorrect, which causes the failure of the investigation.

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

To make matters worse, existing storage forensics have little
capability to mitigate an anti-forensics malware with OS
kernel privilege.

TimeSSD provides trustworthy evidence for storage foren-
sics softwares, even if malicious users try to destroy the
evidence in the victim computer. In contrast to forensics soft-
ware that executes with the OS, TimeSSD leverages the time-
travel property in the hardware-isolated firmware, which
facilitates the collection and reasoning of trusted evidence
for storage forensics. Since TimeSSD is isolated from the OS,
the evidence will be tamper-proof from malicious users.

3 Design of Project Almanac

In this section, we first discuss our threat model, then briefly
introduce our goals. We then present an overview of the
design followed by the details of how we achieve these goals.

3.1 Threat Model

As discussed in § 2.2, malicious users could try to elevate
their privilege to run as administrators and disable or de-
stroy the software-based data backup solutions. We do not
assume the OS is trusted, but instead, we trust the flash-based
SSD firmware. We believe this is a realistic threat model for
two reasons. First, the SSD firmware is located within the
storage controller, underneath the generic block interface
in computer systems. It is hardware-isolated from higher-
level malicious processes. Second, SSD firmware has a much
smaller TCB compared to the OS kernel, making it typically
less vulnerable to malware attacks. Once the firmware is
flashed into the SSD controller, commodity SSDs will not al-
low firmware modifications, which guarantees the integrity
of TimeSSD. In this work, we only consider the situation
where data on persistent storage is overwritten or deleted.

Once abnormal events are recognized (e.g., malicious at-
tacks are detected) or users want to recover data, they can
use TimeKits to conduct the data recovery procedure. How-
ever, malicious programs can try to exploit the data recovery
procedure to attack TimeSSD. For instance, a malicious user
might roll back and erase all the data at a point, and then
insert a large amount of junk data to trigger GC to erase the
retained data copies. Project Almanac will defend against
this attack. As TimeKits rolls back data by writing them
back like new updates (see § 3.9), and TimeSSD retains the
invalid data versions with a time window guarantee (three
days by default, see § 3.4), TimeSSD still retains the recent
data versions in the SSD. We will discuss more potential
attacks in § 3.10.

3.2 Design Goals

Project Almanac consists of TimeSSD and TimeKits as shown
in Figure 2. TimeSSD is a new SSD design that retains past
storage states and their lineage over awindow of time. TimeK-
its supports storage-state querying and data roll-back, to

Flash Memory

Retention
Duration Manager

(§ 3.4)

Garbage
Collection (§ 3.8)

Expired Data
Daemon (§ 3.5)

SSD Firmware

File System TimeKits

Compression
Engine (§ 3.6)

I/O Requests

TimeSSD

Address
Mapping &
Translation

Time-Travel
Index (§ 3.7)

Flash Read/Write/Erase

State Query
Engine (§ 3.9)

Applications

Flash Memory

Retention
Duration Manager

(§ 3.4)

Garbage
Collection (§ 3.8)

Expired Data
Daemon (§ 3.5)

SSD Firmware

File System TimeKits

Compression
Engine (§ 3.6)

I/O Requests

TimeSSD

Address
Mapping &
Translation

Time-Travel
Index (§ 3.7)

Flash Read/Write/Erase

State Query
Engine (§ 3.9)

Applications

Figure 2. System overview of Project Almanac.

exploit the new firmware-isolated time-travel property pro-
vided by TimeSSD.

TimeSSD is designed with two goals. First, to provide a
lightweight and firmware-isolated solution for retaining and
retrieving past storage states. Second, to have comparable
performance and lifetime to a regular SSD.

TimeKits should exploit the time-travel property to enable
storage-state queries and file recovery.

3.3 TimeSSD Overview

TimeSSD leverages the intrinsic properties of flash SSDs (see
§ 2.1) to retain past storage state (or data versions) in the
time order for future retrieval. Figure 2 provides an overview
of the major components in TimeSSD. The retention dura-
tion manager maintains a retention window in a workload-
adaptive manner (§3.4), whereas an expired data daemon is
used to identify invalid data versions (i.e., old pages) beyond
this time window (§3.5). Instead of reclaiming an invalid
page immediately during GC, TimeSSD reclaims it after the
retention window has passed. We use an invalid state marker
to indicate when a page is deleted or updated but should
still be retained. To be able to retain storage states for a long
time, we compress retained data using the compression en-
gine (§3.6). The reverse index manager maintains the reverse
mapping of invalid data versions, to enable fast past state
query (§3.7). The garbage collector is responsible both for
cleaning expired data in order to recover free space, and
for monitoring the GC overhead to provide feedback to the
retention duration manager (§3.8). The state query engine can
execute a variety of storage-state queries (§3.9) to exploit
the time-travel property.
To facilitate our discussion, we first introduce the data

structures used by traditional SSD firmware to support out-
of-place updates and GC, as shown in Figure 3. The address
mapping table (AMT) 1 translates the host logical page
address (LPA) of an I/O request to a physical page address
(PPA) in Flash. The AMT contains a mapping for each LPA

Project Almanac: A Time-Traveling Solid-State Drive EuroSys ’19, March 25–28, 2019, Dresden, Germany

... ...

... ...

... ...
LPA PPA

... ...

... ...

... ...

LPA PPA

Address Mapping
Table (AMT)

Index Mapping
Table (IMT)

... ...

... ...

... ...
VPA PPA

Global Mapping
Directory (GMD)

... ...

... ...

... ...
PBA Status

Block Status
Table (BST)

Bloom Filters

... ...

... ...

... ...
PBA Bitmap

Page Validity
Table (PVT)

... ...

... ...

... ...
PBA Bitmap

Page Reclamation
Table (PRT)

Delta buffers

1 2 3 4

5 6

1

...

0

...

0 1
... DeltasDeltasDeltas

7 8

Existing Tables for Regular SSD

New Components for TIMESSD

... ...

... ...

... ...
LPA PPA

... ...

... ...

... ...

LPA PPA

Address Mapping
Table (AMT)

Index Mapping
Table (IMT)

... ...

... ...

... ...
VPA PPA

Global Mapping
Directory (GMD)

... ...

... ...

... ...
PBA Status

Block Status
Table (BST)

Bloom Filters

... ...

... ...

... ...
PBA Bitmap

Page Validity
Table (PVT)

... ...

... ...

... ...
PBA Bitmap

Page Reclamation
Table (PRT)

Delta buffers

1 2 3 4

5 6

1

...

0

...

0 1
... Deltas

7 8

Existing Tables for Regular SSD

New Components for TIMESSD

Figure 3. Data Structures in the RAM of TimeSSD. Ta-
bles are cached on demand if RAM resource is scarce. LPA:
logical page address, PPA: physical page address, VPA: vir-
tual page address, PBA: physical block address.

to its PPA on SSD. To accelerate this address translation,
recently-accessed mappings are cached. The entire AMT is
stored in Flash as a set of translation pages, whose locations
are recorded in the global mapping directory (GMD) 2 [10].
The block status table (BST) 3 maintains status information
at block granularity, and the page validity table (PVT) 4
maintains status information at page granularity. The BST
tracks the number of invalid pages in each flash block, and
the PVT indicates whether a flash page is valid or not.
Since SSDs only support out-of-place update, any data

update or delete will cause the old version to be invalidated.
Because writes can only happen to erased blocks, we need
the GC process to clean up the invalid pages to make room
for new writes. For a regular SSD, the GC process will first
use the BST to select a candidate block (e.g., that with the
lowest number of valid pages), and then check the PVT to
migrate valid pages in the victim block to a free block. During
migration, the AMT will be updated accordingly. After the
migration, the GC process will erase the candidate block and
mark it as a free block.

To support time-travel properties, TimeSSD requires min-
imal firmware modifications. It adds four data structures,
as shown on the bottom of Figure 3. As data versions are
compressed, the index mapping table (IMT) 5 is used to
maintain the mapping of compressed invalid data versions
(§3.7), which is responsible for translating an LPA to a PPA
for compressed data pages. The page reclamation table (PRT)
6 is a bitmap to indicate whether a flash page can be re-
claimed during GC or not (§3.6). Bloom filters 7 are used to
identify whether an invalid page has expired or not (§3.5).
The Bloom filters are also kept in time order to help us main-
tain the temporal ordering across invalid data versions. Delta
buffers 8 group version deltas at page granularity in order

to write the delta page back to the flash device (§3.6). In addi-
tion, TimeSSD slightly extends the BST 3 to mark the blocks
storing deltas, (§3.8) and extends the GMD 2 to locate the
IMT 5 in the flash device.

To enable the time-travel properties of TimeSSD, we mod-
ify the GC procedure to clean the expired and invalid pages.
For the invalid pages, instead of reclaiming the free space
immediately during the garbage collection (GC) process,
TimeSSD reclaims invalid pages after the retention window
has passed. We use the term invalid to indicate when a page
is deleted or updated but should still be retained. Once an
invalid page has passed its retention window, it will become
expired and can be reclaimed by GC. The expired data dae-
mon is used during GC to decide whether a page has expired.
In addition, GC has a compression engine to compress invalid
pages in order to further save storage space.

3.4 Retention Duration Manager

As discussed, since SSDs make out-of-place updates, updat-
ing or deleting data will invalidate their previous flash pages,
which we retain for a time window. Retaining invalid pages
incurs both storage overhead and performance degradation .
When the number of retained invalid pages increases, the per-
centage of free space will decrease and GC must be triggered
more aggressively. For each GC operation, as the propor-
tion of retained invalid page increases, more retained invalid
pages would need to be migrated to new flash blocks. As a
result, GC operations will take longer, and SSD performance
will degrade since it cannot respond to I/O requests dur-
ing these operations. On the other hand, retaining as much
invalid data as possible helps the time-travel property in
TimeSSD. Therefore, there is a trade-off between retention
duration and storage performance.

To ensure performance, TimeSSD dynamically adjusts the
retention duration, using GC overhead as a proxy for storage
performance degradation. If the estimated GC overhead per
write (see details in §3.8) exceeds a given threshold, we re-
claim some of the oldest invalid data. This reduces retention
duration but improves SSD performance. A larger threshold
results in lower SSD performance, but a longer retention
duration. To fit with various workload patterns, TimeSSD
dynamically adjusts the retention duration, in a workload-
adaptive manner (see the details in §3.5). For example, when
workload writes become more intensive, the retention dura-
tion decreases accordingly.
However, TimeSSD will guarantee a lower bound for the

retention duration in order to avoid malicious attacks. We
chose a default minimum duration of three days, but this is
configurable by SSD vendors. If the free storage space runs
out and the retention duration has not reached three days,
TimeSSD stops serving I/O requests, resulting in the failure
of file system operations. The users or the administrator will
quickly notice this abnormal behavior. Even in this extreme

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

0

...

1

1

1

0

1

0

...

1

0

1

1

0

1

...

0

1

0

0

1

0

...

1

0

0

1

0

h1

h2

h3

h4

Invalidated
PPA1 ,

PPA2 , ...

Hash Functions

T1 T2 T3 T4

BF1 BF2 BF3 BF4

T1

Retrievable Time Window

1

...

1

0

0

1

0

T0

BF0

T0

0

...

1

1

1

0

1

0

...

1

0

1

1

0

1

...

0

1

0

0

1

0

...

1

0

0

1

0

h1

h2

h3

h4

Invalidated
PPA1 ,

PPA2 , ...

Hash Functions

T1 T2 T3 T4

BF1 BF2 BF3 BF4

T1

Retrievable Time Window

1

...

1

0

0

1

0

T0

BF0

T0

Figure 4. Retention window and Bloom Filters. Each
Bloom Filter (BF) records a fixed number of Physical Page
Addresses (PPAs) invalidated in a time segment. The reten-
tion window goes from the creation time of the oldest BF
to the present. For example, after BF0 was deleted, the time
window is shortened from T0 to T1 and thus data pages in-
validated during T0 and T1 become expired.

case, TimeSSD preserves the past storage state of the last
few days, for further analysis.

3.5 Identifying Expired Data

Identifying expired data versions for space reclamation is es-
sential for GC operation, but is challenging. In order to judge
whether an invalid page is expired or not, a naive approach
would be to maintain a table that records the invalidation
time of flash pages. Assuming an SSD of 1TB capacity with
4KB pages and each timestamp occupies 4 bytes, this table
will occupy 1GB, which cannot be fully cached in the RAM
space of the SSD controller. Although it could be partially
cached, like the address mapping table, cache misses would
occur and introduce extra flash access overhead leading to
reduced SSD performance.

To solve this problem in a space-efficientmanner, TimeSSD
employs Bloom Filters (BFs) 7 to record the invalidation
time of flash pages, as shown in Figure 4. Whenever a data
page is invalidated, its physical page address (PPA) is added
to the active BF (i.e., the most recently created one). Once
the number of PPAs in the current BF reaches a threshold,
the active BF becomes inactive and a new active BF is cre-
ated. Thus, each BF records a number of PPAs invalidated
at approximately the same time, spanning from the BF’s
creation to its inactivation. Furthermore, we recycle BFs in
the order of their creation. Thus, the retention window can
be reduced simply by deleting the oldest BF. The retention
window therefore starts from the creation time of the oldest
BF to now.

By looking up the BFs, the garbage collector can identify
whether an invalid page has become expired or not. If the
PPA was found in one of the BFs, the corresponding page
is retained. False positives could happen, in which case an

expired page is retained because it was found in an active BF.
This does not cause incorrect behavior. In contrast, there are
no false negatives, i.e., no non-expired pages will be recycled
by mistake.

To reduce the number of BFs, TimeSSD exploits spatial lo-
cality. Flash pages in a block can only be written sequentially,
and sequential writes are likely to result in sequentially inval-
idated pages. TimeSSD tracks invalidation at the granularity
of a group, i.e., N consecutive pages in a flash block, where
N is user configurable (16 in our design). This way, each BF
can accommodate more invalidated PPAs, and the number
of BFs decreases. If any page in a group gets invalidated, the
entire group is invalid in the BF. This will not cause incorrect
behavior, because the GC algorithm will always verify that
a page is expired before erasing it.

3.6 Delta Compression and Management

Content locality commonly exists between data versions
mapped to the same logical page address (LPA) [45, 48]. For
example, only a small portion of bits (typically 5% to 20%),
called delta, are changed in a page update. TimeSSD exploits
this property and uses delta compression to condense the
obsolete data versions. Delta compression computes the dif-
ference between two versions of the same page and repre-
sents the invalid version with a compressed delta derived
from the difference. Such a compressed delta is usually much
smaller than a page, allowing us to save storage space for
retained versions. When an obsolete version is selected for
compression, the latest data version mapped to the same
LPA is taken as a reference. Since obsolete versions are re-
claimed in time order, a reference data version can never
be reclaimed before all the corresponding deltas. Delta com-
pression brings two advantages. First, retention duration is
increased, because storage overhead is reduced. Second, the
GC overhead is reduced, since fewer retained invalid pages
need to be migrated during the GC procedure.
TimeSSD performs delta compression during GC opera-

tions and idle I/O cycles. During a GC operation, obsolete
pages are compressed and migrated to new flash blocks. This
could increase the GC overhead due to the extra compres-
sion operations. The increase in GC overhead could further
degrade the SSD performance since no I/O operations can
happen during GC.
To overcome this challenge, we exploit idle I/O cycles to

perform background delta compression. As shown in prior
studies, idle time between I/O requests commonly exists in
real-world workloads [18, 22]. TimeSSD predicts the next
idle time length (t ipredict) based on the last interval of time
between I/O requests (t i−1interval) with t

i
predict = α ∗t i−1interval+

(1−α)∗t i−1predict , where t
i−1
predict refers to the time length of last

prediction. We use the exponential smoothing method (with
α = 0.5) to predict idle time. Once the predicted idle time is
longer than a threshold (10milliseconds by default), TimeSSD

Project Almanac: A Time-Traveling Solid-State Drive EuroSys ’19, March 25–28, 2019, Dresden, Germany

chooses a victim flash block, delta compresses the obsolete
data pages, and marks the page that has been compressed or
has expired as reclaimable in the page reclamation table 6
in Figure 3. Thus, future GC operations can directly reclaim
these expired pages. When an I/O request arrives, TimeSSD
immediately suspends background compression operations
in order to remove the overheads of retaining obsolete data
from the critical I/O path.
As a delta is usually much smaller than a page, we use

delta buffers 8 to coalesce deltas to page granularity. When
a buffer is full, or the remaining space is not large enough
to accommodate a new delta, the delta buffer is written to
a delta block. Each BF is associated with dedicated delta
blocks for storing deltas corresponding to the pages that
were invalid in a time segment. Note that a compressed data
page might hit multiple BFs, due to false positives. TimeSSD
checks the BFs 7 in reverse time order (i.e., from the most
recently created one to the oldest one). Once a hit occurs,
the checking is stopped. This may delay the expiration of
some data versions, but it avoids premature expiration.
TimeSSD stores deltas with different invalidation times

separately for two reasons. The first is tomaintain the reverse
mapping for deltas which are mapped to the same LPA (see
§3.7). Second is to improve the GC efficiency of cleaning
expired data. When a BF is deleted to shorten the retention
duration, the associated delta blocks contain all expired data
versions and can therefore be erased immediately.

3.7 Time-travel Index

To achieve fast retrieval of previous data versions, the index
manager of TimeSSD maintains a reverse index for each
LPA. Each flash page has a reserved out-of-band (OOB) area
for in-house metadata [10]. TimeSSD leverages this area to
store: (1) the LPA mapped to this flash page, (2) the previous
PPA mapped to this LPA, called a back-pointer, and (3) the
write timestamp of this page. The back-pointer constructs
the reverse mapping chain between different data versions
for the same LPA. The write timestamp is used to identify
different data versions of an LPA.
As discussed previously, some data versions are stored

as deltas. Each delta contains the following metadata: (1)
the LPA mapped to this delta, (2) the back-pointer, i.e., the
PPA that contains the previous data version of this LPA, (3)
the write timestamp of this data version, and (4) the write
timestamp of the reference version (necessary for decom-
pression). In a delta block, a page may contain multiple deltas.
To retrieve these deltas, TimeSSD stores a header in each
delta page. The header includes: (1) the number of deltas in
this delta page, (2) the byte offset of each delta, and (3) the
metadata of all the deltas.

We can build a reverse mapping chain with back-pointers
between flash pages that store different data versions of an
LPA. However, this index can be broken by GC operations.
If GC happens to a page that is in the middle of the reverse

LPN PPN

Address Mapping
Table

L X T3L X T3

 Data Page W

data L X T3

 Data Page W

data L Y T2L Y T2

 Data Page X

data L Y T2

 Data Page X

data

L Z T1L Z T1

 Data Page Y

data L Z T1

 Data Page Y

data L ─ T0L ─ T0

 Data Page Z

data L ─ T0

 Data Page Z

data

L W
... ...

... ...
L W
... ...

... ...
LPN PPN

Address Mapping
Table

L X T3

 Data Page W

data L Y T2

 Data Page X

data

L Z T1

 Data Page Y

data L ─ T0

 Data Page Z

data

L W
... ...

... ...

(a) Data page chain before GC.

X

LPN PPN

Address Mapping Table

L W
... ...

... ...
L W
... ...

... ...
L X T3L X T3

 Data Page W

data L X T3

 Data Page W

data L Y T2L Y T2

 Data Page X

data L Y T2

 Data Page X

data X

LPN PPN

Address Mapping Table

L W
... ...

... ...
L X T3

 Data Page W

data L Y T2

 Data Page X

data

(b) Data page chain after GC (victim: data page Y).

LPN PPN

Index Mapping
Table

L P
... ...

... ...
L P
... ...

... ...
... ...

 Delta (L, Q, T1, T3)
in Delta Page P

... ...

Delta (L, ‒, T0, T3)
in Delta Page Q

(c) Delta page chain after GC (victim: data page Y).

Figure 5. Reverse index of an LPA. (a) shows the reverse
mapping chain before the data page chain is broken by a
GC operation; (b) and (c) show the reverse mapping chain
after data page Y is located and reclaimed. Each data page
contains OOB metadata: LPA, back-pointer, and write times-
tamp. Each delta contains metadata: LPA, back-pointer, the
write timestamp of itself, and the reference data version. ‘-’
indicates a NULL pointer.

mapping chain, the page data will be migrated to a new
flash page. The chain will be broken since the previous back-
pointer will no longer point to the correct page.
To solve this problem, TimeSSD divides the reverse map-

ping chain of an LPA into two parts: the data page chain and
the delta page chain, as shown in Figure 5. The data page
chain contains uncompressed data versions that are newer
than those (in compressed form) in the delta page chain. The
PPA of the head page for each data page chain is recorded
in the address mapping table 1 , while the PPA of the head
page for a delta page chain is recorded in the index mapping
table 5 .

The delta page chain is immune to GC operations, because
reclaiming delta blocks involves no delta migration. When
the data pages chain of an LPA is broken by GC, TimeSSD
traverses the chain to find out all the unexpired versions
up to the victim data page. For each page found, the OOB
metadata will be used to verify that it has the correct LPA
and a decreasing timestamp value. Then, the pages found
during traversal plus the GC victim are compressed into
deltas. When these deltas are written to delta pages, their
back-pointers are set so that they are added to the head of the

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

Algorithm 1 GC procedure of TimeSSD

1: Check the block status table 3
2: if there is an expired delta block then

3: Erase this delta block
4: else

5: Select a victim data block
▷ the block with the most invalid pages

6: Identify valid/invalid pages in the block page
▷ by checking the page validity table 4

7: for each valid page do
8: Migrate this page to a free page
9: Update the address mapping entry 1
10: for each invalid page do
11: Check the page reclamation table 6
12: if this page is reclaimable then
13: Discard this page

▷ this page has been compressed or expired
14: else

15: Checking this page in the bloom filters 7
16: if this page misses all the bloom filters then
17: Discard this page

▷ this page has been expired
18: else

19: Read this page and its OOB metadata
20: Read the older and unexpired data versions

▷ through the data pages chain
21: Read the latest data version
22: Compress these old data versions

▷ the latest version as reference
23: Write back deltas to delta blocks with metadata
24: Update the head of the delta pages chain

▷ in the index mapping table 5
25: Mark compressed data pages as reclaimable

▷ in the page reclamation table 6
26: Erase this data block

corresponding delta page chain. At the same time, the PPA
of the head page for the delta page chain is updated in the
index mapping table 5 for the target LPA. The data pages
that were compressed are marked as reclaimable in the page
reclamation table 6 . As a result, the data page chain and the
delta page chain compose a complete reverse mapping chain
for an LPA.

3.8 Garbage Collection in TimeSSD

Since TimeSSD needs to retain invalid versions for each
page, the GC algorithm shown in Algorithm 1 is different
from traditional SSDs. Expired delta blocks are prioritized
to be reclaimed, as no migration overhead is included. If no
expired delta blocks are available, the data block that has the
largest number of invalid pages is chosen (by checking the
block status table 3). A page is reclaimable if it is either an
expired page whose PPA misses in all the Bloom Filters 7
or an invalid page that is marked as reclaimable in the page
reclamation table 6 . A page is not reclaimable if it is either
a valid page or a retained page that needs to be compressed
and then migrated during GC operations.

Besides performing GC operations, the garbage collector
monitors and periodically estimates the GC overhead per
user page write. The GC cost can be quantified by tracking
the number of flash page reads (Nr ead), flash page writes
(Nwrite), flash block erases (Nerase), and delta compressions
(Ndelta) in each period. A period refers to the time during

which a fixed number of page writes (Nf ixed) are issued.

Nread ∗Cread + Nwrite ∗Cwrite + Nerase ∗Cerase + Ndelta ∗Cdelta

Nfixed

> TH ∗Cwrite
(1)

We assume the operation costs (in units of time) of a flash
page read, a flash page write, a flash block erase, and a delta
compression are Cr ead , Cwrite , Cerase , and Cdelta respec-
tively. We use the left side of Equation 1 as the estimation
of the average GC overhead. This overhead measurement is
then used to adjust the retention window (see §3.4). Specif-
ically, once the average GC overhead exceeds a threshold
(TH), 20% of the cost of a page write by default (the right
side in Equation 1), retention window is shortened.

GC operations erase flash blocks with the largest number
of invalid pages, so wear imbalance occurs when flash pages
are not evenly updated. To balance the wear between flash
blocks, wear leveling swaps cold data (i.e., rarely updated
data) to old blocks (i.e., blocks that bear more erases) [12].
TimeSSD employs such a swapping technique for data blocks
and handles the migration of retained invalid data pages
in victim blocks like GC operations. Delta blocks are not
considered, because we need to prevent the delta pages chain
from being broken. The modification to the wear-leveling
mechanism, has little impact on its effectiveness for two
reasons. First, delta blocks are erased in the time order, so
the wear imbalance between them is avoided. Second, the
allocations of delta blocks and data blocks share the same
free block pool, where wear balance can be achieved by the
wear leveling of data blocks over time.

3.9 TimeKits: Storage State Query and Recovery

To enable the exploitation of the time-travel property pro-
vided by TimeSSD, TimeKits are developed for both state
queries and recoveries. The basic functionalities/APIs can
be classified into three categories, as shown in Table 1.

Address-based state queries. Given a single LPA or a
range of LPAs, TimeSSD can utilize the reverse index to
quickly retrieve any invalid data version within the retention
window for each LPA. TimeKits provides three APIs for such
state queries. AddrQuery can get the first data version(s)
written since some time ago for a single LPA or a range
of LPAs. For each LPA, we traverse the reverse index and
retrieve each data version, one by one, beginning from the
latest version. Each data version’s writing time is checked,
and the retrieval stops when a version’s writing time reaches
the target time, or the tail of the index is reached. On contrast,
AddrQueryRange or AddrQueryAll is used to get all the data
versions within a given time period or the entire retention
window, respectively. Address-based state queries are useful
to retrieve the invalid versions of a given file, whose LPAs
can be obtained from the file-system metadata.

Project Almanac: A Time-Traveling Solid-State Drive EuroSys ’19, March 25–28, 2019, Dresden, Germany

Table 1. The API for storage-state query in TimeKits.
API Explanation

AddrQuery(addr, cnt, t) Get the first data version(s) written since some time ago (specificed by t) for a single LPA (cnt = 1) or a
range of LPAs (cnt > 1) started at addr.

AddrQueryRange (addr, cnt, t1, t2) Get all the data versions written in a time period (between t1 and t2) for a single LPA (cnt = 1) or a range
of LPAs (cnt > 1) started at addr.

AddrQueryAll(addr, cnt) Get all the retained data versions for a single LPA (cnt = 1) or a range of LPAs (cnt > 1) started at addr.
TimeQuery(t) Get all the LPAs that has been updated since some time ago (specified by t) and their writing timestamps.
TimeQueryRange(t1, t2) Get all the LPAs that has been updatedwithin a time period (between t1 and t2) and their writing timestamps.
TimeQueryAll() Get all the LPAs that has been updated within the entire retention window and their writing timestamps.
RollBack(addr, cnt, t) Roll back to the first data version(s) written some time ago (specified by t) for a single LPA (cnt = 1) or a

range of LPAs (cnt > 1) started at addr.
RollBackAll(t) Roll back to the first data versions written some time ago (specified by t) for all the valid LPAs.

Time-based state queries.TimeKits supports three kinds
of time-based state queries, which return the write history
of LPAs over time. TimeQuery can get the all the LPAs that
have been updated since some time, and their writing times-
tamps (an updated LPA may have multiple writing times-
tamps). TimeQueryRange or TimeQueryAll perform such
queries within a given time period, or the entire retention
window, respectively. These queries are similar to address-
based state queries except that all the valid LPAs are checked.
To improve query performance, TimeKits leverages the par-
allelism of SSDs to maximize read throughput. Time-based
state queries are useful for storage forensics.

State rollbacks. Besides state queries, TimeKits can roll
back storage states to undo changes. RollBack reverts an
LPA or a range of LPAs to a previous version. For each LPA,
this is achieved by (1) retrieving a specified previous version
through AddrQuery, (2) writing back this data version like
an update to the LPA, and (3) invalidating the latest data
version and modifying the address mapping entry. This way
a state rollback is just a regular write with a previous data
version. Future accesses will return the previous version,
while all previous versions still remains recoverable. This API
enables a lightweight rollback for a given LPA. RollBackALL
rolls back all the valid LPAs to a previous version, is also
supported. However, rolling back a large amount of LPAs is
aggressive and causes a large volume of writes. This could
significantly shorten the retention duration, or even cause
failures due to the violation of the 3-day retaining guarantee
for invalid data.
These state query APIs provide flexibility, and enable de-

velopers to efficiently and securely defend against encryption
ransomware, recover data, and perform storage forensics.
Previous file systems, such as Ext4 and XFS, write metadata
changes to a journal, and rely on the journal to recover the
LPAs. If the LPAs have been overwritten or the relevant jour-
nal records have been erased for space reclamation, these
tools will fail to recover the target file. Our file recovery tools
exploit the time-travel property of TimeSSD. The tool can,
either retrieve erased journal records and invalid versions
via address-based state queries, obtain the LPAs from the file
system superblock and inode table, or restore the storage

device to a previous state, via the state rollback functions
discussed above.

3.10 Discussion

Project Almanac not only inspires us to rethink how we
should build more efficient and secure storage systems, but
also provides suggestions for SSD vendors how future flash-
based SSDs can be architected. Consider the increasing den-
sity and decreasing cost of flash memory (e.g., the pricing of
today’s SSDs is about $0.20/GB). This allows us to add more
flash chips into future devices to retain more storage states
for a longer period of time.

Retaining past storage states can prevent the secure dele-
tion of sensitive data from the flash medium [21]. However, it
is feasible to protect sensitive data from leakage in TimeSSD.
We can use a user-specified encryption key to encrypt in-
valid data. This data can still be recovered by users, but can
not be retrieved by others without the encryption key.
A malicious attacker may initiate attacks dedicated to

TimeSSD. For instance, attackers might intensively write
and delete junk files. However, it is noted that a deleted
file is not physically deleted in the SSD until it is garbage
collected. Therefore, the SSD will quickly become full, and
TimeSSD will stop accepting I/O requests. This can be easily
observed by end users.

Alternatively, an attacker might slowly write junk data. In
this case, TimeSSD retention duration will increase accord-
ingly since the workload is less write intensive. As shown in
Figure 8, the retention duration can increase to up to 56 days.
Many ransomware variants aim to lock up user data and col-
lect ransom quickly to prevent from being caught. TimeSSD
will significantly increases the risk of getting caught and can
thus thwart malicious attackers from attacking our system.
As discussed in § 3.1, malicious users would also exploit

the data recovery procedure of TimeKits to destroy the
retained invalid data. Since TimeKits recovers user data
by writing the invalid versions back to the SSD, the recent
data versions could still be retained in the SSD. Moreover,
TimeSSD will retain the invalid data versions within a time-
window guarantee, even though malicious users keep writ-
ing junk data to the SSD. Therefore, we are still be able to

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

Table 2. The Workloads Used in Our Evaluation.
Name Description
MSR [25] The storage traces collected from enterprise servers.
FIU [9] The storage traces collected from computers at FIU.
IOzone [16] A benchmark for generating various file operations.
PostMark [17] A file system benchmark that emuates mail servers.
OLTP [36] An open-source database engine Shore-MT.

recover the recent storage states. To defend this attack, an-
other simple approach is that users can remove the SSD and
plug it into another trusted computer for data recovery.

4 TimeSSD Implementation

We implement TimeSSD on a Cosmos+ OpenSSD FPGA de-
velopment board [27] running the NVM Express (NVMe)
protocol. This board has a programmable ARM Cortex-A9
Dual-core and 1GB of DRAM. The SSD has a 1TB capacity
and an additional 15% of the capacity as over-provisioning
space. Each flash page is 4KB with 12 bytes of OOB meta-
data, and each block has 256 pages. Besides basic I/O com-
mands to issue read and write requests, we define newNVMe
commands to wrap the TimeKits API (shown in Table 1).
TimeKits is developed atop the host NVMe driver which
issues NVMe commands to the firmware running on the
OpenSSD board. Inside TimeSSD, we slightly modify the
NVMe command interpreter and add a state query engine
into the SSD firmware for state query execution. We reserve
64MB of memory capacity in the firmware for the Bloom Fil-
ters and for the delta compression buffer. Implementing these
functions adds 10,537 lines of code to the OpenSSD stack.
TimeSSD adopts the page-level address translation [10]. We
implemented delta compression with the LZF algorithm [23]
because of its high speed.

5 Evaluation

In our evaluation, we demonstrate that (1) TimeSSD has
minimal negative impact on storage performance and SSD
lifetime for data-intensive applications (§ 5.2). (2) It performs
better than software-based approaches such as journaling
and log-structured file systems, while providing firmware-
isolated time-travel features (§ 5.3). (3) TimeKits performs
fast storage-state queries for different systems functions
(§ 5.4). (4) Two case studies to show that TimeSSD can restore
user data to defend against encryption ransomware, and can
provide data reverting for applications with low performance
overhead (§ 5.5).

5.1 Experimental Setup

To evaluate the benefits of the firmware-isolated time-travel
properties, we compare TimeSSD with a regular SSD. We use
a variety of real-world storage traces, file system benchmarks,
and data-intensive workloads, as shown in Table 2: (1) A set
of week-long storage traces collected on enterprise servers
running different applications, such as a media server, a

hm rsr
ch src stg ts us

r
wde

v

res
ea

rch

web
mail

on
lin

e

web
-on

lin
e

web
us

ers
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

 IO
 R

es
po

ns
e

Ti
m

e
(m

s) Regular SSD
 TimeSSD

(a) 50% capacity usage

hm rsr
ch src stg ts us

r
wde

v

res
ea

rch

web
mail

on
lin

e

web
-on

lin
e

web
us

ers
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
ve

ra
ge

 IO
 R

es
po

ns
e

Ti
m

e
(m

s) Regular SSD
 TimeSSD

(b) 80% capacity usage

Figure 6. Average I/O request response time of running
real-world storage traces with TimeSSD vs. regular SSD.

research project management system, and a print server
at Microsoft Research Cambridge [25]. (2) A set of storage
traces for twenty days, collected on department computers
at FIU [9]. (3) The IOZone benchmark, which generates a
variety of file operations [16]. (4) The PostMark benchmark,
which generates a workload approximating a mail server. (5)
An open-source database engine, Shore-MT, running with
a variety of transaction benchmarks, such as TPCC, TPCB,
and TATP. The machine connected to the programmable SSD
has a 24-core Intel Haswell based Xeon CPU, running at 2.6
GHz, with 32GB of DRAM. Before each experiment, we run
variants of the file system benchmarks to warm up the SSD
and to ensure GC operations are triggered.

5.2 Comparison with Conventional SSD

We first evaluate the impact of TimeSSD on storage perfor-
mance, device lifetime, and data retention duration, with
MSR storage traces. In order to evaluate the device-level
time-travel properties for a long period of time, we prolong
each MSR trace to one month by duplicating it ten times. In
each duplication, we mutate the trace by shifting the logical
addresses of the I/O requests by a random offset. As reported
in [48], the delta compression ratio values follow a Gaussian

Project Almanac: A Time-Traveling Solid-State Drive EuroSys ’19, March 25–28, 2019, Dresden, Germany

hm rsr
ch src stg ts us

r
wde

v

res
ea

rch

web
mail

on
lin

e

web
-on

lin
e

web
us

ers
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
W

rit
e

A
m

pl
ifi

ca
tio

n
 Regular SSD
 TimeSSD

(a) 50% capacity usage

hm rsr
ch src stg ts us

r
wde

v

res
ea

rch

web
mail

on
lin

e

web
-on

lin
e

web
us

ers
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
rit

e
A

m
pl

ifi
ca

tio
n

 Regular SSD
 TimeSSD

(b) 80% capacity usage

Figure 7. Write amplification of running real-world storage traces with TimeSSD vs. regular SSD.

distribution and the average ratio ranges from 0.05 to 0.25
for real-world applications. Since the MSR and FIU traces
do not contain real data content, we use 0.2 as the default
compression ratio for the experiments in this section. To
understand the impact of storage capacity usage, we vary
the utilization of the device from 50% to 80% of the total
storage capacity of the SSD.

5.2.1 Impact on Storage Performance

Figure 6 shows that, compared to a conventional SSD, TimeSSD
increases the I/O response time by an average of 2.5% under
50% storage capacity usage, and 5.8% under 80% space usage.
As shown in Figure 6, the experimental results demonstrate
that TimeSSD introduces minimal performance overhead for
the MSR traces, while retaining the invalid data of the recent
three days in the SSD. Since TimeSSD preserves more invalid
data versions, it could migrate and compress more pages
during the GC process, leading to a higher GC overhead.
As we can see in Figure 6, the performance degradation at
80% capacity usage is larger than at 50%. This is because
TimeSSD guarantees a lower bound of retention duration
for invalid data. With a higher capacity usage, the GC will
be triggered more frequently, which slightly decreases the
storage performance of the SSD.

5.2.2 Impact on SSD Lifetime

As flash devices have limited lifetime (or endurance), it is
necessary to evaluate the impact of TimeSSD on this aspect.
We use write amplification, the ratio of flash write traffic to
user write traffic, as the metric to evaluate SSD lifetime. A
larger write amplification factor indicates a shorter lifetime.
As shown in Figure 7, TimeSSD increases write amplification
by an average of 10.1% under 50% capacity usage and 15.3%
under 80% usage. This increase is mainly due to themigration
of retained invalid pages during GC operations. However,
compared to the software-based approaches, TimeSSD sig-
nificantly reduces write amplification (see details in § 5.3).

5.2.3 Impact on Retention Duration

The retention duration of TimeSSD is determined by both
device usage and workload write patterns. A high usage
or a write-intensive workload degrades retention duration.
Figure 8 shows retention duration under different workloads
and capacity utilization. Aswe can see, the retention duration
ranges from 3 days to 56 days. When the capacity usage
decreases from 80% to 50%, retention duration is significantly
improved because more storage space is available.

5.3 Comparison with Software-Based Approaches

We compare TimeSSD with the typical software-based so-
lutions for tracking the history of storage states, such as
journaling in the Ext4 file system and logging in the log-
structured file system F2FS [20]. We ran file system bench-
marks IOZone and PostMark that read/write real data con-
tent from/to files with 4KB granularity, and also an open-
source database system Shore-MT [36] under the OLTP
benchmarks TPCC, TPCB, and TATP. For our comparison,
we run standard Ext4 and F2FS above a standard SSD (the
OpenSSD board without the time-travel property), and we
run Ext4 with journaling disabled for TimeSSD.
We first run the IOZone benchmark to generate vari-

ous storage operations as shown in Figure 9 (a): sequen-
tial/ramdom read and write. As IOZone generates random
values for the file content, the delta compression ratio of
TimeSSD is almost zero. TimeSSD provides similar perfor-
mance to Ext4 and F2FS for read operations. For sequen-
tial writes, the performance of TimeSSD is similar to Ext4
and F2FS, because there are no invalid pages retained in
the SSD. For random writes, TimeSSD improves the storage
performance by 3.3× compared to Ext4, since it avoids the
additional write traffic introduced by journaling. TimeSSD
performs slightly better than F2FS as it avoids the overhead
of managing logs in software.
For the PostMark and OLTP benchmarks, which gener-

ate real application data, TimeSSD performs 1.5–2.2× and

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

28 35 42 49 56 63
0

5

10

15
D

at
a

R
et

ai
ni

ng
 T

im
e

(d
ay

)

Trace Length (day)

 hm rsrch
 src stg
 ts usr
 wdev

(a) MSR (80% capacity usage)

28 35 42 49 56 63
0
5

10
15
20
25
30
35
40
45
50
55
60

D
at

a
R

et
ai

ni
ng

 T
im

e
(d

ay
)

Trace Length (day)

 hm rsrch
 src stg
 ts usr
 wdev

(b)MSR (50% capacity usage)

20 25 30 35 40
0

5

10

15

20

25

30

35

40

D
at

a
R

et
ai

ni
ng

 T
im

e
(d

ay
)

Trace Length (day)

 research
 webmail
 online
 web-online
 webusers

(c) FIU (80% capacity usage)

20 25 30 35 40
0

5

10

15

20

25

30

35

40
D

at
a

R
et

ai
ni

ng
 T

im
e

(d
ay

)

Trace Length (day)

 research
 webmail
 online
 web-online
 webusers

(d) FIU (50% capacity usage)

Figure 8. The data retention duration of TimeSSD under different workloads and capacity usages. For the applica-
tions running on university computers, the invalid data can be retained for up to 40 days; for the applications running on
company servers, the invalid data can be retained for up to 56 days.

1.1–1.2× better than Ext4 and F2FS respectively (see Figure 9
(b)). Specifically, for the PostMark benchmark, TimeSSD out-
performs Ext4 by 2.2×. For the OLTP benchmarks, executed
with 16 threads, TimeSSD performs 1.5× (6.3K TPS), 1.7×
(31.1K TPS), and 1.6× (122.3K TPS) better than Ext4 for TPCC,
TPCB, and TATP respectively. Similar to the results reported
by Lee. at al [20], F2FS performs 1.2–1.8× better than Ext4
by reducing the redundant writes of data journaling. As
TimeSSD exploits the inherent logging feature in hardware,
it reduces the write amplification by 3.4× and 1.3× on av-
erage compared to Ext4 and F2FS respectively. Moreover,
TimeSSD compresses the data in SSD (with a compression
ratio of 0.12–0.23) for more free space, which incurs less

frequent GC operations and further improves the storage
performance.

5.4 Performance of Storage-State Query

We now evaluate the effectiveness of querying storage states
with TimeKits API. In each experiment, we first run the stor-
age workloads (see § 5.2) to warm up the SSD, then execute
three functions in the following order: TimeQuery, querying
the storage states one day ago; AddrQueryAll, retrieving
all retained data versions of a randomly selected LPA since
one day ago; and RollBack, rolling back the selected LPA
to a previous version. We show their performance in Ta-
ble 3. Since a TimeQuery operation needs to scan all the
valid LPAs to identify recently updated ones, it consumes

Project Almanac: A Time-Traveling Solid-State Drive EuroSys ’19, March 25–28, 2019, Dresden, Germany

SeqRead SeqWrite RandomRead RandomWrite
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce
 S

pe
ed

up

 Ext4 F2FS TimeSSD

(a) IOZone

PostMark TPCC TPCB TATP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 S
pe

ed
up Ext4 F2FS TimeSSD

(b) PostMark and OLTP

Figure 9. Performance speedup of running file system benchmarks and real OLTP workloads with TimeSSD vs.
software-based approaches like Ext4 and F2FS.

Pety
a

CTB-Lo
ck

er

Jig
Saw

Mak
tub

Mob
ef

Cryp
toW

all

Lo
ck

y
7e

v3
n

Stam
pa

do

Tes
laC

ryp
t

Hyd
raC

ryp
t

Cryp
toF

ort
rre

ss

Cerb
er

0
5

10
15
20
25
30
35
40
45
50
55
60

Av
er

ag
e

R
ec

ov
er

y
Ti

m
e

(s
ec

s) FlashGuard
 TimeSSD

Figure 10. Recovering the data that have been en-

crypted by a variety of ransomware families.

about 734 seconds (12 minutes). In contrast, as performing
an AddrQueryAll operation requires only a few flash page
reads and delta decompression operations, it takes a few
milliseconds. These experiments demonstrate that the basic
storage-state queries can retrieve invalid data versions or
conduct data rollback quickly.

5.5 Case Studies

In the following, we use two real-world use cases to show
that developers can leverage TimeKits to fulfill interesting
system functions.

5.5.1 Recovering from Ransomware Attack

We compare our solution with another SSD named Flash-
Guard [14] which was developed specifically for defending
against encryption ranomware. Unlike TimeSSD, FlashGuard

mmap
.c

mpro
tec

t.c
sla

b.c

sw
ap

.c
aio

.c

ino
de

.c

iom
ap

.c
iov

.c of.
c

pc
i.c

0

50

100

150

200

250

300

350
R

ec
ov

er
 T

im
e

(m
ill

is
ec

s)

 1 thread
 2 threads
 4 threads

Figure 11. Reversing OS files to previous versions.

only retains the invalid data (potential victim data) that was
encrypted by ransomware. We gathered 13 encryption ran-
somware samples from VirusTotal and ran them on TimeSSD.
Once the ransomware pops up a ransom screen to indicate
the computer is attacked, we start our procedure to restore
the encrypted user data. As we can see in Figure 10, TimeSSD
can restore the data encrypted by ransomware in less than
one minute. This is because most encryption ransomware
will finish its attack quickly (75 minutes as indicated in [14],
and only a limited volume of data updates are made to the
SSD. Compared to FlashGuard, TimeSSD introduces 14.1%
more performance overhead on average, due to the data de-
compression. This could be further optimized with hardware
acceleration. We wish to implement the hardware accelera-
tion as future work.

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

Table 3. Execution time of querying storage states.

hm rsrch src stg ts usr wdev research webmail online web-online webusers
TimeQuery (seconds) 764 740 734 758 734 746 728 710 722 716 728 722

AddrQueryAll (milliseconds) 5.5 1.1 1.1 1.3 1.1 0.8 0.7 0.3 6.6 0.3 5.5 0.6
RollBack (milliseconds) 6.3 2.1 2 2.3 2.1 1.7 1.7 1.4 7.6 1.2 6.3 1.5

5.5.2 Reversing File Changes

To further evaluate the time-travel property of TimeSSD,
we develop a data-recovery function (similar to the revert
function in GitHub) based on the APIs provided by TimeKits.
We download the Linux kernel version 4.16.7. and replay its
1,000 most recent commits in 10 minutes (we commit 100
patches per minute) to the files in the code base. After that,
we roll back some of the files to the version of one minute
prior. Wemanually verify the content of the files and confirm
that TimeSSD reverses the file contents to its correct version.
Figure 11 shows that when we use more threads to do the
data rollback, the data recovery time is dramatically reduced,
as TimeSSD can leverage the internal parallelism of SSDs to
enable multi-threaded data recovery.

6 Related Work

Retaining Storage State. Retaining storage state is useful
for data recovery, auditing, and storage forensics. It has tra-
ditionally been done through software-based approaches,
such as versioning [24, 26, 28, 49], snapshotting [8], and data
backup [3]. However, these software-based approaches are
vulnerable to malware attacks. They can be disabled or termi-
nated by malicious users with kernel privileges. In contrast,
TimeSSD presents a firmware-isolated solution using which
the past storage state can be retained, even if the host OS is
compromised. Devecsery et al. proposed an eidetic computer
system [6] that uses hard disk drives to preserve the entire
state of a computer system. Our Project Almanac focuses on
retaining the storage states and their lineage in the hardware
device transparently. TimeSSD can be used as the storage for
the eidetic system.

Securing Storage Systems.As discussed,malicious users
can acquire kernel privileges to tamper with, delete, and
encrypt user data. To defend against these attacks, several
secure storage systems are proposed. Huang et al. [14] pro-
posed FlashGuard to defend against encryption ransomware
to keep old versions of victim data. However, it does not
retain all the past storage states. Strunk et al. [38] proposed a
self-securing storage system, called S4, that uses log-structured
and journal-based metadata to preserve old data versions
for post-intrusion analysis and data recovery. S4 was im-
plemented as a network-attached hard disk drive with an
object-based interface. BVSSD [15] developed block-level
versioning in SSDs, however, it cannot understand the rela-
tionships between blocks and thus cannot guarantee data
consistency. With file system support, the consistency issue
can be addressed, but these software-based solutions are

vulnerable to malware attacks. TimeSSD achieves the same
security goals, by presenting a firmware-isolated solution
with minimal performance overhead.

System Software and Hardware Co-design. Modern
SSDs have increased computing and memory resources, mak-
ing it feasible to implement software functionalities inside
the hardware device. Prior work has exploited the co-design
of systems software and hardware for various purposes, such
as journaling support [4], transaction support [30], and snap-
shotting [39]. They demonstrate that it is both practical and
reasonable to exploit the SSD hardware for better perfor-
mance. However, none of them took storage security as
a serious concern in their design. In this work, TimeSSD
exploits the intrinsic properties of flash to implement time-
travel properties in hardware. It presents a firmware-isolated
design, which can enhance the storage security significantly.

7 Conclusion

We present Project Almanac which can transparently retain
past storage states and their lineage in flash-based storage
devices with a low performance overhead. We develop its
core idea into a time-travel SSD named TimeSSD that pro-
vides a firmware-isolated solution without any modifications
to system software and applications. We also implement a
toolkit called TimeKits to exploit the time-travel property
of TimeSSD and to bring the benefits of a variety of system
features, such as storage-state query and data roll-back, to
end users and administrators. Our evaluation demonstrates
that TimeSSD can retain past storage states for about eight
weeks with minimal performance overhead.

Acknowledgments

We would like to thank our shepherd Marc Shapiro as well
as the anonymous reviewers for their insightful feedback
and comments. This work was supported in part by NSF
grant CNS-1850317. Jian Huang is supported by the NetApp
Faculty Fellowship Award.

References

[1] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Quresh, Jian Huang,
Nam Sung Kim, Jinjun Xiong, and Wen-Mei Hwu. 2019. FlatFlash:
Exploiting the Byte-Accessibility of SSDs within A Unified Memory-
Storage Hierarchy. In Proceedings of the 24th ACM International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS’19). Providence, RI.

[2] SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and Dae-
Hun Nyang. 2018. SSD-Insider: Internal Defense of Solid-State Drive
against Ransomware with Perfect Data Recovery. In Proceedings of 2018

Project Almanac: A Time-Traveling Solid-State Drive EuroSys ’19, March 25–28, 2019, Dresden, Germany

IEEE 38th International Conference on Distributed Computing Systems
(ICDCS’18). Vienna, Austria.

[3] Ann Chervenak, Vivekenand Vellanki, and Zachary Kurmas. 1998.
Protecting file systems: A survey of backup techniques. In Proceedings
of Joint NASA and IEEE Mass Storage Conference.

[4] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. 2009. JFTL: A Flash
Translation Layer Based on a Journal Remapping for Flash Memory.
ACM Transaction on Storage 4, 4 (Feb. 2009), 14:1–14:22.

[5] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. In Pro-
ceedings of 25th USENIX Security Symposium (USENIX Security’16).
Austin, TX.

[6] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen. 2014. Eidetic Systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI’14)
(OSDI’14). Broomfield, CO.

[7] Dropbox. 2019.
https://www.dropbox.com/?landing=dbv2.

[8] G. Duzy. 2005. Match snaps to apps. In Storage, Special Issue on man-
aging the information that drives the enterprise.

[9] FIU Traces. 2010. http://iotta.snia.org/traces/390.
[10] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: a

flash translation layer employing demand-based selective caching of
page-level address mappings. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating System (ASPLOS’09). Washington, DC.

[11] RyanHarris. 2006. Arriving at anAnti-forensics Consensus: Examining
How to Define and Control the Anti-forensics Problem. In Proceedings
of the Digital Forensic Research Conference (DFRWS’06). Lafayette, IN.

[12] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017. FlashBlox:
Achieving Both Performance Isolation and Uniform Lifetime for Virtu-
alized SSDs. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST’17). Santa Clara, CA.

[13] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten
Schwan. 2015. Unified Address Translation for Memory-mapped SSDs
with FlashMap. In Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture (ISCA ’15). Portland, OR.

[14] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K. Qureshi.
2017. FlashGuard: Leveraging Intrinsic Flash Properties to De-
fend Against Encryption Ransomware. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS’17)
(CCS’17). Dallas, TX.

[15] Ping Huang, Ke Zhou, Hua Wang, and Chun Hua Li. 2012. BVSSD:
Build Built-in Versioning Flash-Based Solid State Drives. In Proceedings
of 5th Annual International Systems and Storage Conference (SYSTOR’12).
Haifa, Israel.

[16] IOzone Lab. 2016.
http://www.iozone.org/.

[17] Jeffrey Katcher. 1997. PostMark: A New File System Benchmark. Tech-
nical Report (1997).

[18] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal
Sharda. 2008. Characterization of storage workload traces from produc-
tion Windows Servers. In Proceedings of IEEE International Symposium
on Workload Characterization (IISWC’08). 119–128.

[19] Amin Kharaz, Sajjad Arshad, Collin Mulliner, William Robertson, and
Engin Kirda. 2016. UNVEIL: A Large-Scale, Automated Approach to
Detecting Ransomware. In 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX.

[20] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho.
2015. F2FS: A New File System for Flash Storage. In Proceedings of 13th
USENIX Conference on File and Storage Technologies (FAST’15). Santa
Clara, CA.

[21] Jaeheung Lee, Sangho Yi, Junyoung Heo, Hyungbae Park, Sung Y. Shin,
and Yookun Cho. 2010. An Efficient Secure Deletion Scheme for Flash

File Systems. Journal of Information Science and Engineering 26, 1
(2010).

[22] Sungjin Lee and Jihong Kim. 2014. Improving Performance and Ca-
pacity of Flash Storage Devices by Exploiting Heterogeneity of MLC
Flash Memory. IEEE Trans. Comput. 63, 10 (2014), 2445–2458.

[23] LibLZF. 2008. http://oldhome.schmorp.de/marc/liblzf .html.
[24] C. B. Morrey and D. Grunwald. 2003. Peabody: the time travelling

disk. In Proceedings of the 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSST’03). 241–253.

[25] MSR Cambridge Traces. 2008. http://iotta.snia.org/traces/388.
[26] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew Himmer,

and Erez Zadok. 2004. A Versatile and User-oriented Versioning File
System. In Proceedings of the 3rd USENIX Conference on File and Storage
Technologies (FAST’04) (FAST’04). San Francisco, CA.

[27] Open-Source Solid-State Drive Project for Research and Education.
2017.
http://www.openssd.io/.

[28] Zachary Peterson and Randal Burns. 2005. Ext3Cow: A Time-shifting
File System for Regulatory Compliance. ACM Transaction on Storage
1, 2 (May 2005), 190–212.

[29] Vijayan Prabhakaran, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2005. Analysis and Evolution of Journaling File Systems.. In
USENIX Annual Technical Conference (USENIX ATC’05). Anaheim, CA.

[30] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou. 2008.
Transactional Flash. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI’08) (OSDI’08). San
Diego, CA.

[31] Price Trends of SSDs and HDDs. 2018. https://pcpartpicker.com/
trends/price/internal-hard-drive/.

[32] Sriram Raghavan. 2013. Digital forensic research: current state of the
art. CSI Transactions on ICT (2013).

[33] Samsung. 2013. Samsung SSD 840 EVO Data Sheet. White Paper
(2013).

[34] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB Butler. 2016.
Cryptolock (and drop it): stopping ransomware attacks on user data.
In Distributed Computing Systems (ICDCS), 2016 IEEE 36th International
Conference on. IEEE, 303–312.

[35] Kai Shen, Stan Park, and Men Zhu. 2014. Journaling of Journal Is
(Almost) Free. In Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST’14). Santa Clara, CA.

[36] Shore-MT. 2014.
https://sites.google.com/view/shore-mt/.

[37] SSD prices plummet again, Close in on HDDs. 2016.
http://www.pcworld.com/article/3040591/storage/ssd-prices-
plummet-again-close-in-on-hdds.html.

[38] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N.
Soules, and Gregory R. Ganger. 2000. Self-securing Storage: Protecting
Data in Compromised System. In Proceedings of the 4th USENIX Con-
ference on Symposium on Operating System Design & Implementation
(OSDI’00) (OSDI’00). San Diego, CA.

[39] Sriram Subramanian, Swaminathan Sundararaman, Nisha Talagala,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. Snap-
shots in a flash with ioSnap. In Proceedings of the European Conference
on Computer Systems (EuroSys’14). Amsterdam, Netherlands.

[40] Ken Takeuchi. 2008. Solid-state Drive and Memory System Innovation.
Lecture (2008).

[41] The best cheap SSD deals in May 2018. 2018. https://
www.techradar.com/news/cheap-ssd-deals.

[42] Michael Virable, Stefan Savage, andGeoffreyM. Voelker. 2012. BlueSky:
A Cloud-Backed File System for the Enterprise. In Proc. 10th USENIX
conference on File and Storage Technologies (FAST’12). San Jose, CA.

[43] WannaCry Ransomware Attack. 2017.
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack.

https://www.dropbox.com/?landing=dbv2
http://iotta.snia.org/traces/390
http://www.iozone.org/
http://oldhome.schmorp.de/marc/liblzf.html
http://iotta.snia.org/traces/388
http://www.openssd.io/
https://pcpartpicker.com/trends/price/internal-hard-drive/
https://pcpartpicker.com/trends/price/internal-hard-drive/
https://sites.google.com/view/shore-mt/
http://www.pcworld.com/article/3040591/storage/ssd-prices-plummet-again-close-in-on-hdds.html
http://www.pcworld.com/article/3040591/storage/ssd-prices-plummet-again-close-in-on-hdds.html
https://www.techradar.com/news/cheap-ssd-deals
https://www.techradar.com/news/cheap-ssd-deals
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

EuroSys ’19, March 25–28, 2019, Dresden, Germany Wang, et al.

[44] Michael Yung Chung Wei, Laura M Grupp, Frederick E Spada, and
Steven Swanson. 2011. Reliably Erasing Data from Flash-Based Solid
State Drives.. In Procceedings of 9th USENIX Conference on File and
Storage Technologies (FAST’11). San Jose, CA.

[45] GuanyingWu and Xubin He. 2012. Delta-FTL: Improving SSD Lifetime
via Exploiting Content Locality. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys’12). Bern, Switzerland.

[46] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic
Function Detection in Obfuscated Binaries via Bit-precise Symbolic
Loop Mapping. In Proc. 38th IEEE Symposium on Security and Privacy
(Oakland’17). San Jose, CA.

[47] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swami-
nathan Sundararaman. 2014. Don’t Stack Your Log On My Log. In 2nd
Workshop on Interactions of NVM/Flash with Operating Systems and
Workloads (INFLOW’14). Broomfield, CO.

[48] Qing Yang and Jin Ren. 2011. I-CASH: Intelligently Coupled Array
of SSD and HDD. In Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture (HPCA’11).

[49] Qing Yang, Weijun Xiao, and Jin Ren. 2006. TRAP-Array: A Disk Array
Architecture Providing Timely Recovery to Any Point-in-time. In Pro-
ceedings of the 33rd International Symposium on Computer Architecture
(ISCA’06). 289–301.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Technical Background on SSDs
	2.2 Motivation Examples: Why TimeSSD

	3 Design of Project Almanac
	3.1 Threat Model
	3.2 Design Goals
	3.3 TimeSSD Overview
	3.4 Retention Duration Manager
	3.5 Identifying Expired Data
	3.6 Delta Compression and Management
	3.7 Time-travel Index
	3.8 Garbage Collection in TimeSSD
	3.9 TimeKits: Storage State Query and Recovery
	3.10 Discussion

	4 TimeSSD Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Comparison with Conventional SSD
	5.3 Comparison with Software-Based Approaches
	5.4 Performance of Storage-State Query
	5.5 Case Studies

	6 Related Work
	7 Conclusion
	References

