
Fallout: Reading Kernel Writes From User Space

Marina Minkin1, Daniel Moghimi2, Moritz Lipp3, Michael Schwarz3, Jo Van Bulck4, Daniel
Genkin1, Daniel Gruss3, Frank Piessens4, Berk Sunar2, Yuval Yarom5

1University of Michigan
2Worcester Polytechnic Institute
3Graz University of Technology

4imec-DistriNet, KU Leuven
5The University of Adelaide and Data61

Abstract

Recently, out-of-order execution, an important per-
formance optimization in modern high-end proces-
sors, has been revealed to pose a significant security
threat, allowing information leaks across security do-
mains. In particular, the Meltdown attack leaks in-
formation from the operating system kernel to user
space, completely eroding the security of the system.
To address this and similar attacks, without incurring
the performance costs of software countermeasures,
Intel includes hardware-based defenses in its recent
Coffee Lake R processors.

In this work, we show that the recent hardware
defenses are not sufficient. Specifically, we present
Fallout, a new transient execution attack that leaks
information from a previously unexplored microarchi-
tectural component called the store buffer. We show
how unprivileged user processes can exploit Fallout
to reconstruct privileged information recently written
by the kernel. We further show how Fallout can be
used to bypass kernel address space randomization.

Fallout affects all processor generations we have
tested. However, we notice a worrying regression,
where the newer Coffee Lake R processors are more
vulnerable to Fallout than older generations.

1 Introduction

The architecture and security communities will re-
member 2018 as the year of Spectre [28] and Melt-
down [33]. Speculative and out-of-order execution,
which have been considered for decades to be harm-
less and valuable performance features, were discov-

ered to have dangerous industry-wide security impli-
cations, affecting operating systems (OSs) [28, 33],
browsers [1, 28], virtual machines [51], trusted exe-
cution environments (e.g., SGX) [49], AES hardware
accelerators [47] and more.

Meltdown, in particular, is a severe hardware issue.
In a Meltdown attack, an unprivileged attacker per-
forms an explicit access violation to a privileged mem-
ory location containing the OS’s kernel. The CPU re-
sponds with the value from that address, while mark-
ing the load operation as faulty. Perhaps most shock-
ingly, the CPU then allows subsequent transient com-
putation on the returned value. Finally, by the time
that the CPU recognizes the violation and attempts
to undo the damage caused by transient execution,
the attacker already had sufficient cycles to leak the
kernel data using a microarchitectural covert channel,
such as via the processor’s cache [8, 38].

Recognizing the danger posed by this hardware is-
sue, the computer industry mobilized. Potentially in-
curring significant performance losses [12], all major
OS deployed countermeasures based on the KAISER
patch [14], which removes the mapping of kernel
pages from the address space of user processes. At
a high level, Kernel Page Table Isolation (KPTI) re-
lies on the idea that even if the attacker can access
the entire currently mapped address space, the at-
tacker lacks the capabilities of accessing memory out-
side of the current address space, thus leaving the
kernel safely out of reach.

Unfortunately, with Foreshadow [49] and
Foreshadow-NG [51] it became clear that an
attacker can transiently access even pages that are
not mapped into the address space. The attacker
then subsequently exploits a Meltdown-like technique

1

to leak privileged data, including enclave secrets
safeguarded by Intel’s Software Guard eXtensions
(SGX) [49] or across virtual machines running on
the same physical host [51].

In an attempt to claw back some of the per-
formance loss, and to permanently eliminate Fore-
shadow and Meltdown related issues, Intel announced
already back in 2018 strong, silicon-based Meltdown
defenses in future processors enumerating Rogue
Data Cache Load resilience (RDCL NO) [22]. With
the recent release of the 9th generation Coffee Lake
R microarchitecture, such Meltdown-resistant proces-
sors are finally available on the mass consumer mar-
ket. The RDCL NO security feature promises to ob-
viate the need for KPTI and other defenses, while
improving overall performance [6]. However, while
Intel claims that these fixes address Meltdown and
Foreshadow, it remains unclear whether new gen-
erations of Intel processors are properly protected
against Meltdown-type transient execution attacks.
Thus, in this work we set out to investigate the fol-
lowing question:

Is kernel data safe in the new generation of proces-
sors? Can ad-hoc software mitigations be safely dis-
abled on post-Meltdown Intel hardware?

1.1 Our Contribution

Unfortunately, in this paper, we answer these ques-
tions in the negative. We present Fallout, a new at-
tack on the hardware-based memory isolation mech-
anisms in Intel CPUs. Using Fallout, user-space pro-
grams can read data that has recently been written
by the kernel, as well as derandomize Kernel Address
Space Layout Randomization (KASLR). Similarly to
previous transient execution attacks, Fallout does not
require any privileges except for the ability to run
code, and does not exploit any kernel vulnerabilities.

The Mechanism Behind Fallout. Fallout ex-
ploits an optimization that we call Write Transient
Forwarding (WTF), which incorrectly passes values
from memory writes to subsequent memory reads. In
a nutshell, when the program writes a value to mem-
ory, the processor needs to first translate the virtual
address of the destination to a physical address and
then acquire exclusive access to the location. Rather
than stalling the store instruction and subsequent
computation, the processor records the value and the
address in the store buffer, and continues executing
the program. The store buffer then resolves the ad-

dress, acquires the access to the memory location and
stores the data.

When a value is in the store buffer, care should be
taken that subsequent loads from the same address do
not read stale values from memory. To solve this, the
processor matches the addresses of all load instruc-
tions against addresses in the store buffer. In the
case of a match, the processor forwards the matching
value from the store buffer to the load instruction.
To increase efficiency, the processor uses partial ad-
dress matches to rule out the need for store-to-load
forwarding. WTF kicks in when a load instruction
partially matches a preceding store and the proces-
sor determines that the load is bound to fail. In such
cases, instead of cleaning up the state of the pro-
cessor, it marks the load as faulty, and incorrectly
forwards the value of the partially matched store.

Exploiting the WTF optimization. Fallout
exploits this behavior to leak, through a microarchi-
tectural channel, the value that WTF incorrectly for-
wards. The attacker deliberately performs a faulty
load, causing the CPU to transiently forward an in-
correct value from the store buffer. We subsequently
leak the value using a Flush+Reload [52] side chan-
nel. As the store buffer is a shared resource used by
all software running on a CPU core, the incorrectly-
forwarded value might not even belong to the at-
tacker’s process. Empirically demonstrating this, in
this paper, we show how to exploit the WTF opti-
mization to leak values recently written by the kernel
from user space as well as how to derandomize the
kernel’s ASLR.

Fallout vs. Meltdown Like all Meltdown-type
attacks, Fallout exploits transient execution past an
exception. However, unlike previous Meltdown-type
attacks, in Fallout the adversary does not read from
the address of the protected value. Instead, the value
leaks while the adversary loads from an unrelated
memory address. As a result, the hardware coun-
termeasures for Meltdown and Foreshadow in recent
Intel processors do not protect against Fallout. Fi-
nally, we note a worrying regression in recent Intel
processors, where, possibly due to the added hard-
ware countermeasures, newer processors seem more
vulnerable to Fallout than previous generations.

Security Analysis of Speculation Mechanisms
and Coffee Lake Refresh. As a final con-
tribution, we present the first analysis of various
exception-creation and exception-suppression mech-
anisms used to mount Fallout across various Intel ar-
chitectures. As we show, not all creation and suppres-

2

sion mechanisms are interchangeable, and the exact
combination is, in fact, architecture dependent. Fi-
nally, we show that the hardware change in exception
creation and suppression introduced by Intel in the
latest Coffee Lake Refresh architecture make them
more vulnerable to our attack.

1.2 Disclosure and Timeline

Following the practice of responsible disclosure, we
have notified CPU vendors about our findings.

Intel. We notified Intel about our findings, in-
cluding a preliminary writeup and proof-of-concept
code, on January 31st, 2019. Intel had acknowl-
edged the issue and requested an embargo on the
results in this paper, ending May 14th, 2019. Intel
has further classified this issue as Microarchitectural
Store Buffer Data Sampling (MSBDS), assigning it
CVE-2018-12126 and a CVSS ranking of Medium.
Finally, Intel had indicated that we are the first aca-
demic group to report this issue and that a similar
issue was found internally as well.

AMD. We also notified AMD’s security response
team regarding our findings, including our writeup.
AMD had investigated this issue of their architectures
and indicated that AMD CPUs are not vulnerable to
the attacks described in this paper.

ARM. We are in the process of identifying a trusted
contact at ARM security in order to share our find-
ings with them. We expect to achieve that within
days of the submission deadline.

IBM. Finally, we also notified IBM security about
the finding reported in this work. IBM had responded
that none of their CPUs is affected, including System-
V and PowerPC.

The RIDL Attack. In a concurrent indepen-
dent work1, the RIDL attack [50] analyzes additional
buffers present inside Intel CPUs, with specific at-
tention to the Line Fill Buffer (LFB) and load ports.
There, they show that faulty loads from the LFB or
Load Ports leak information across various security
domains. We note however that Fallout is different
from (and complementary to) RIDL. This is since
the two attacks exploit different microarchitectural
elements (LFB and load ports for RIDL and Store
Buffer and WTF optimization for Fallout). In par-
ticular, RIDL can be used to recover values recently

1Both teams made contact on May 7th, provided each other
with an overview of their findings, and coordinated public dis-
closure as well as communication with Intel. For a complete
timeline describing the flow of information related to this dis-
closure, see mdsattacks.com.

placed in the LFB while Fallout allows the attacker to
recover the value of a specific attacker-chosen writes
in the store buffer.

2 Background

In this section, we provide the background required
to understand our attack, including a description of
caches and cache attacks, transient execution attacks,
and Intel Transactional Synchronization Extensions.

2.1 Caches and Cache Attacks

Caches are an essential part of modern processors.
They are small and fast memories where the CPU
stores copies of data from the main memory to hide
the main memory access latency. Modern CPUs have
a variety of different caches and buffers for various
purposes. The main cache hierarchy is the instruction
and data cache hierarchy consisting of multiple levels,
which vary in size and latency. The L1 is the smallest
and fastest cache. The L3 cache, also called the last-
level cache (LLC), is typically the largest and slowest.

Cache Organization. Modern caches are typ-
ically set-associative, i.e., a cache line is stored in a
fixed set, as determined by part of its virtual or phys-
ical address. Addresses that map to the same set are
called congruent. On modern processors, the last-
level cache is typically physically indexed and shared
across cores. It is also often inclusive of L1 and L2,
which means that all data stored in L1 and L2 is also
stored in the last-level cache. The cache hierarchy ex-
poses the latency difference between the main mem-
ory access (cache miss) and the cache access (cache
hit), i.e., exactly the latency difference that caches in-
troduce. This can be used in side channels on a non-
colluding victim or in covert channels where sender
and receiver collude to transmit information.

Cache Attacks. Different cache attack techniques
have been proposed in the past, such as Prime+
Probe [40, 41] and Flush+Reload [52]. Flush+Reload
attacks and its variants [16, 17, 32, 54] work on shared
memory at a cache-line granularity. The attacker re-
peatedly flushes a cache line and measures how long
it takes to reload it. The reload time will always be
high unless another process has reloaded the cache
line back into the cache. In contrast, Prime+Probe
attacks work without shared memory, and only at
a cache-set granularity. The attacker repeatedly ac-
cesses a set of congruent memory addresses, filling an

3

mdsattacks.com

entire cache set with its own cache lines, and mea-
sures how long that takes. As this is repeated in a
loop, the cache set is always filled with the attacker’s
cache lines. Hence the access time will always be
rather low. However, if another process accesses a
memory location in the same cache set, it will evict
one of the attacker’s cache lines and the access time
will increase.

Cache attacks have been used to break crypto-
graphic implementations [9, 10, 34, 40, 41, 52, 53],
infer user input [17, 32, 42], and break system-level
security [15, 20]. Both Prime+Probe and Flush+
Reload have also been used in high-performance
covert channels [16, 34, 38], also as a building block
of transient execution attacks such as Meltdown [33],
Spectre [28], and Foreshadow [49, 51] that we detail
below.

2.2 Superscalar Processors

To achieve their high performance, modern proces-
sors are often superscalar, that is, they perform mul-
tiple operations in parallel. In current implementa-
tions, e.g., in modern Intel processors (refer Fig. 1),
execution of a program is divided between two main
parts. The frontend is responsible for processing the
machine-code instructions of the program, decoding
them to a stream of micro-ops (µOPs) that are sent
to the Execution Engine for execution.
Out-of-order Execution. The execution en-
gine consists of multiple execution units, which can
execute various µOPs. To allow superscalar execu-
tion, the execution engine follows a variant of Toma-
sulo’s algorithm [48], which executes µOPs when the
data they depend on is available, rather than fol-
lowing strict program order. Once executed, the
µOPs arrive at the reorder buffer whose purpose
is to retire µOPs in program order, ensuring that
architecturally-visible effects of µOPs execute in the
order the programmer specified.
Speculative Execution. The stream of µOPs
that the frontend generates does not necessarily cor-
respond to the sequence of instructions in the pro-
gram. A major cause of deviation is branch predic-
tion. When the frontend reaches a branch instruc-
tion, it often does not yet know where execution will
proceed. Instead of waiting, the frontend attempts to
predict the outcome of the branch and proceed from
there. In the case that the prediction is correct, the
generated µOPs match the program and can be pro-
cessed. Otherwise, at some later stage, the proces-
sor notices the misprediction. The frontend is then

E
x
ec
u
ti
on

E
n
gi
n
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,

..
.

A
L
U
,
B
ra
n
ch

L
o
a
d
d
a
ta

L
o
a
d
d
a
ta

S
to
re

d
a
ta

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

S
u
b
sy
st
em

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

F
ro
n
te
n
d

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 1: Simplified illustration of a single core of
the Intel’s Skylake microarchitecture (as presented
in [33]). Instructions are decoded into µOPs and ex-
ecuted out-of-order in the execution engine by indi-
vidual execution units.

steered to the correct instruction, and µOPs gener-
ated as part of the misprediction are dropped by the
reorder buffer without committing any of their re-
sults to the architectural state of the processor. Fol-
lowing Canella et al. [5], we refer to µOPs that are
not retired as transient. Similarly, following Glew
et al. [11], we use refer to µOPs other than the one
waiting for retirement as speculative. We note that
speculative µOPs do not necessarily result from spec-
ulative execution. The are called speculative because
the execution engine cannot determine whether they
are transient or not.

4

2.3 The Memory Subsystem

In this work, we are mainly interested in how mem-
ory load and store operations are implemented. The
main two issues we deal with are how to resolve the
physical addresses used by these instructions and how
to ensure that out-of-order execution does not break
dependencies between these instructions.

2.4 Transient Execution Attacks

While transient execution does not influence the ar-
chitectural state of the processor, it can change the
microarchitectural state. Transient execution attacks
abuse transient execution to execute a few instruc-
tions transiently and modify the microarchitectural
state. The change in the microarchitectural state is
then observed using a covert-channel attack. Spectre-
type [28] attacks exploit different prediction mecha-
nisms, while Meltdown-type [33, 49] attacks exploit
transient execution following a CPU exception.

Spectre Attacks. The first Spectre attacks fo-
cused on the CPU’s Pattern History Table (PHT),
Branch History Buffer (BHB), and Branch Target
Buffer (BTB) as microarchitectural data structures
causing mispredictions [28]. Both transient loads and
stores [27] are possible, leading to a variety of attacks,
including reading and writing from out-of-bound
memory locations, transferring control-flow to arbi-
trary addresses via mispredicted indirect jumps [28]
or returns [29, 36]. In all Spectre attacks, the at-
tacker mistrains the processor by performing a cer-
tain type of branches, influencing the corresponding
microarchitectural predictor. Subsequently, the vic-
tim runs with incorrect predictions and thereby leaks
data. While Spectre attacks can only leak architec-
turally accessible data, the mistraining works across
privilege boundaries, e.g., the kernel-to-user bound-
ary, or SGX. Another type of Spectre attacks is based
on unsuccessful load-to-store forwarding [19]. Spec-
tre attacks can even be mounted in remote scenarios,
i.e., from JavaScript [28] or just by sending requests
to a vulnerable system [43].

Meltdown Attacks. Meltdown-type attacks
do not exploit misprediction. Instead, they exploit
deferred handling of permission checks. Before the
permission check is performed and the attacker pro-
cess triggers a processor exception architecturally, the
data is already handed to the subsequent instruc-
tions that are also transiently executed. The first
Meltdown attack [33] exploits the deferred permission
check for the user/supervisor bit in the page tables,

allowing to leak arbitrary memory mapped in the ker-
nel address space. Other Meltdown attacks similarly
exploit the deferred check of present or reserved bits
in page table entries [49, 51], the writable bit in the
page table entry [27], or the permission check when
reading system registers [4, 21].

Countermeasures. Recognizing the danger posed
by transient execution attacks, a wide range of de-
fenses have been proposed to defend against them.
However, to date, it is unclear which defenses actu-
ally increase the security level and which are triv-
ially bypassable [5, 39]. One defense where the con-
sensus across academia and industry is that it pro-
tects against Meltdown, if correctly implemented, is
KAISER [14]. KAISER is the idea of duplicating the
page table hierarchies for every process, once with
the kernel space mappings present and once without.
When running in user space the mapping without the
kernel space is used. The idea of KAISER has been
integrated into all major operating systems, e.g., in
Linux as KPTI [35], in Windows as KVA Shadow [24],
and in Apple’s xnu kernel as double map [31]. While
KAISER costs performance, the use of PCID and
ASID on modern processors reduced the overheads
for real-world workloads to almost zero [12]. More re-
cent processors ship with hardware patches and hence
have the KAISER patch disabled by default [6].

2.5 Exception Creation

As explained in Section 2.4, in a Meltdown-type at-
tack the attacker exploits the deferred enforcement
of permissions (i.e., deferred exception handling)
present in Intel CPUs in order to obtain privileged in-
formation. In the original Meltdown attack [33], the
attacker exploits the delayed enforcement of the User
/ Supervisor bit in the CPU’s hardware in order to
read privileged information and subsequently leak it
through a covert channel. Next, in Foreshadow [49]
and Foreshadow-NG [51], the attacker exploits the
fault cases of a page marked as non-present and there-
fore cannot be accessed.

2.6 Exception Suppression

One problem common to Meltdown-type attacks is
that the instructions they exploit cause exceptions,
which by default terminate the program. Four main
approaches have been suggested for handling this ter-
mination. In the fork-and-crash approach, a forked
process executes the attack, and its parent resumes
after the process terminates. Exception handling sets

5

up a signal handler to catch the exception and re-
sume execution. A third option suppresses the excep-
tion by wrapping the attack code in a mispredicted
branch or call, which speculatively executes the at-
tack. Finally, the exception can be suppressed by
wrapping it in a hardware transaction. The last ap-
proach is the most effective [33] and most widely ap-
plicable [49, 51]. Given its applicability, in Section 2.7
below, we provide additional details about exception
suppressing using hardware transactions. We refer
interested readers to Lipp et al. [33] for further infor-
mation on the other approaches.

2.7 Transactional Memory

Intel’s Transactional Synchronization Extensions
(TSX) is an instruction set extension to the x86-64
architecture that supports hardware transactions. In
a nutshell, a transaction is a sequence of instructions
that are either executed atomically or not executed at
all. Atomic execution implies that concurrent threads
cannot observe intermediate updates from the trans-
action and the thread executing the transaction can-
not observe any changes from other threads.

Implementing TSX Transactions. Transac-
tions are delimited by two instructions. The xbegin
instruction starts a transaction and xend terminates
it. The xbegin instruction also specifies an abort
location where execution continues if the transaction
fails. Transaction implementation mostly relies on
existing processor mechanisms. Instructions follow-
ing xbegin are not retired and instead are kept in
the reorder buffer until the xend is executed. If the
transaction is aborted, all pending instructions in the
transaction are discarded, and the architectural state
of the processor is reverted to the state before the
xbegin. To revert memory state and to maintain
atomicity, memory stores inside a transaction mod-
ify the L1 cache but are not evicted to lower memory
layers, and memory lines read in a transaction remain
in the last-level cache. TSX locks the affected lines to
protect against concurrent modifications and reads of
modified lines.

Transaction Aborts. If concurrent processes
try to write to these locked lines, the transaction
aborts and is rolled back. Similarly, if the proces-
sor runs out of cache space for the transaction data,
the transaction aborts. This behavior of TSX trans-
actions has been exploited for both side-channel at-
tacks and defenses [7, 13, 45]. Transactions also abort
in other scenarios. In particular, transactions abort

when the processor receives an exception or if an in-
struction within the transaction causes a fault. Thus,
when a Meltdown-type attack is enclosed in a TSX
transaction, the faulting instruction causes a trans-
action abort, which effectively reverses the architec-
tural state of the processor to the state prior the
xbegin instruction, suppressing the fault. Yet, as
Lipp et al. [33] observe, the microarchitectural state
of the processor is not reverted when a transaction
aborts, allowing the attacker to recover information
from the aborted instructions.

3 The Write Transient For-
warding Optimization

In this section, we discuss the WTF optimization that
is exploited with the Fallout attack. First, we will
illustrate the basic idea of Fallout with a simple toy
example before discussing the hardware mechanisms
responsible for the attack.

3.1 A Toy Example

Listing 1 shows a simple code snippet which exploits
the WTF optimization to read variables without di-
rectly accessing them. While this example does not
have security implications on its own, it nonethe-
less shows the general concept behind Fallout, allow-
ing user-level code to read information stored in the
CPU’s store buffer without directly accessing the ad-
dress corresponding to that information.
Setup. First, 2 pages are allocated. The
victim page is a user space accessible page where the
user can store and read data. However, by setting the
protection level to PROT NONE on the attacker page,
all access permissions to this page are revoked and
the page is marked as not-present. Thus, any access
to the attacker page will yield an exception.

Next, we write the value 42 to the offset 7 of the
victim page. Rather than executing the write to
memory immediately, the processor first notes the op-
eration in the store buffer. We note that the code in
Listing 1 never reads from the victim page directly.
Reading Previous Stores. Instead of read-
ing from the victim page at the specified offset, the
code starts a TSX transaction (Line 8) and reads
from the attacker page. As the page is inaccessi-
ble, the memory access will fail and the TSX trans-
action aborts. However, the exception will be only
handled by the reorder buffer when the memory ac-
cess operation is retired. In the meantime, due to the

6

1 char* victim_page = mmap (..., PAGE_SIZE ,

...);

2 char* attacker_page = mmap (..., PAGE_SIZE

, ...);

3 mprotect(attacker_page , PAGE_SIZE ,

PROT_NONE);

4
5 offset = 7;

6 victim_page[offset] = 42;

7
8 if (tsx_begin () == 0) {

9 memory_access(lut + 4096 *

attacker_page[offset]);

10 tsx_end ();

11 }

12
13 for (i = 0; i < 256; i++) {

14 if (flush_reload(lut + i * 4096)) {

15 report(i);

16 }

17 }

Listing 1: Pseudocode of Fallout. Some mmap
parameters were omitted for clarity

WTF optimization, the CPU will transiently forward
the value of the previous store at the same page off-
set. Thus, the memory access will pick-up the value
of the store to the victim page, in this example 42.
Using a cache-based covert channel, the incorrectly
forwarded value is transmitted. Finally, when the
failure and transaction abort are handled, the archi-
tectural effects of the transiently executed code are
reverted.

Recovering the Leaked Data. Using
Flush+Reload, the attacker can recover the leaked
value from the cache-based covert channel in Line 14.
Fig. 2 displays the results of measured access times to
the look-up-table (lut) on a Meltdown-resistant i9-
9900K CPU. As the figure illustrates, the typical ac-
cess time to an array element is above 200 cycles, with
the exception of element 42, where the access time is
well below 100 cycles. We note that this position
matches the value written to target page. Hence,
the code can recover the value without directly read-
ing it.

3.2 The Mechanism Behind Fallout

We now turn our attention to the store buffer, a mi-
croarchitectural component, which lies in the core of
WTF and Fallout.

The Store Buffer Implementation. When the
CPU writes data to memory, it needs to first resolve

 100

 1000

 0 50 100 150 200 250

A
cc

es
s

T
im

e
 (

cy
cl

es
)

Probed Value

Figure 2: Access times to the probing array during
the execution of Listing 1. The dip at 42 represents
a correct recovery of the value from the store buffer.

the virtual address to a physical address. Then it ac-
quires exclusive access to the cache line of the target
data. Rather than waiting, the processor stores the
information to the store buffer.

Fig. 3 shows the structure of the store buffer ac-
cording to Intel patents [2, 3]. Based on these patents,
a store operation is implemented using two µOPs,
store address (STA) and store data (SDA). Splitting
the operation to two µOPs allows the processor to
process the parts independently and asynchronously.

Asynchronous processing raises the issue of mem-
ory ordering. Specifically, operations that access the
same memory locations must be performed at the or-
der specified in the program and, in particular, load
operations should get the value from preceding stores
to the same address. Intel published some properties
of the store buffer [23]. However, we are not aware
of any public documentation of the algorithms used
for resolving memory access conflicts. Intel’s patents
on the topic [2, 3, 30] suggest that the store buffer is
virtually indexed, but each entry also includes parts
of the physical address, such that mismatches on the
partial addresses ensure the absence of dependencies,
allowing loads to proceed without waiting for full ad-
dress resolution.

Write Transient Forwarding. An algorithm for
handling partial address matches appears in another
Intel patent [18]. Remarkably, the patent explicitly
states that:

”if there is a hit at operation 302 [partial
match using page offsets] and the physical
address of the load or the store operations
is not valid, the physical address check at
operation 310 [full physical address match]
may be considered as a hit”

That is, if address translation of a load µOP fails
and the 12 least significant bits of the load address
match those of a prior store, the processor assumes

7

...

...

ID...Data

ID...Data

...

ID...Data

ID...Data

Store Data
Buffer (SDB)

ID ... VA[:12]

...

...

ID

ID

Store Address
Buffer (SDB)

PA[19:12] VA[11:0]

VA[:12] PA[19:12] VA[11:0]

VA[:12] PA[19:12] VA[11:0]

VA[:12] PA[19:12] VA[11:0]

Index 0

Index 1

Index n-1

Index n

Store Data
(SDA) µOP

Store Address
(STA) µOP

Store Buffer

ID

Stores from
execution engine

Stores to L1
Data Cache

Figure 3: Structure of the store buffer on Intel CPUs.

that the physical addresses of the load and the store
match and forwards the previously stored value to the
load µOP. We note that the failed load is transient
and will not retire, hence WTF has no architectural
implications. However, as this work demonstrates,
microarchitectural side effects of transient execution
following the failed load may result in inadvertent in-
formation leaks. Given the surprising nature of this
optimization and its security consequence, we refer
to it as the Write Transient Forwarding (WTF) opti-
mization.

Fault and Suppression Mechanisms. To bet-
ter understand the WTF mechanism, we evaluate the
toy example in Listing 1 with multiple combinations
of causes of faults and fault-suppression mechanisms.
We experimented with three Intel processors: a Cof-
fee Lake R i9-9900K, a Kaby Lake i7-7600U, and a
Skylake i7-6700. We summarize the results in Ta-
ble 1.

We observe that unlike earlier generations, the Cof-
fee Lake R processor exhibits a different behavior
based on the fault suppression mechanism. Specif-
ically, in the example in Listing 1 replacing the TSX
fault suppression mechanism with branch mispredic-
tion does not trigger the WTF optimization, and the
value does not leak. We suspect that the processor
inhibits some forms of speculative execution within
branch misprediction while allowing it in TSX trans-
actions. Moreover, the Coffee Lake R processor does
not seem to trigger the WTF optimization when a
load fails due to a read from a kernel page. We note
that transient reads from such pages is the main cause
of the Meltdown bug. Thus, we conjecture that the
differences in behavior between the processor gener-
ations are due to the recent mitigations for the Melt-
down and Foreshadow attacks introduced in the Cof-

fee Lake R architecture.
Coffee Lake R Regression. We also note a trou-
bling regression in Intel’s newest architecture. When
accessing a page marked as non-present, we can only
trigger the WTF optimization on the Coffee Lake Re-
fresh processor.

3.3 Measuring the Store Buffer Size

We now turn our attention to measuring the size of
the store buffer. Intel advertises that Skylake proces-
sors have 56 entries in the store buffer [37]. We could
not find any publications specifying the size of the
store buffer in newer processors, but as both Kaby
Lake and Coffee Lake R are not major architectures,
we assume that the size of the store buffers has not
changed. As a final experiment in this section, we
now attempt to use Fallout to confirm this assump-
tion. To that aim, we perform a sequence of store
operations, each to a different address. We then use
a faulty load aiming to trigger a WTF optimization
and retrieve the value stored in the first (oldest) store
instruction. For each number of stores, we attempt
100 times at each of the 4096 page offsets, to a total
of 409,600 per number of stores. Fig. 4 shows the
likelihood of triggering the WTF optimization as a
function of the number of stores for each of the pro-
cessor and configurations we tried. We see that we
can trigger the WTF optimization provided that the
sequence has up to 55 stores. This number matches
the known data for Skylake and confirms our assump-
tion that it has not changed in the newer processors.

The figure further shows that merely enabling hy-
perthreading does not change the store buffer capac-
ity available to the process. However, running code
on the second hyperthread of a core halves the avail-
able capacity, even if the code does not perform any
store. This confirms that the store buffers are stati-
cally partitioned between the hyperthreads [23], and
also shows that partitioning takes effect only when
both hyperthreads are active.

4 Using Fallout to Break Ker-
nel Isolation

In this section, we show that Fallout can leak infor-
mation from the OS kernel to unprivileged users. Our
proof-of-concept implementation consists of two com-
ponents. The first is a kernel module that writes to a

8

Fault Suppression Transactional Memory (TSX) Branch Misprediction
Architecture Pre Coffee Lake R Coffee Lake R Pre Coffee Lake R Coffee Lake R

User not present 7 3 7 7

Kernel data 3 7 3 7

Kernel code 3 3 3 3
Unmapped kernel 7 7 7 7

Table 1: Evaluating different fault-inducing and fault-suppression mechanisms on Intel architectures before
Coffee Lake R and on Coffee Lake R. 3 indicates that our attack can successfully leak data, while 7 indicates
no leakage was observed. Finally, we denote the case of the Coffee Lake R regression with 3©, while changes
following hardware countermeasures are marked with 7©.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70R
e
a
d

s
o
f

O
ld

e
st

 W
ri

te
 (

%
)

Number Of Writes
SL HT off
SL HT on

SL use HT

KL HT off
KL HT on

KL use HT

CL-R HT off
CL-R HT on

CL-R use HT

Figure 4: Measuring the size of the store buffer on
Kaby Lake and Coffee Lake machines. In the experi-
ment, we perform multiple writes to the store buffer
and subsequently measure the probability of retriev-
ing the value of the first (oldest) store. The results
agree with 56 entries in the store buffer and with a
static partitioning between hyperthreads.

predetermined virtual address in a kernel page. The
second is a user application that performs a faulty
load from an address in a user page, such that the
page offset of this address the same as the page offset
the kernel module writes to. Exploiting the WTF op-
timization, the user application can retrieve the data
written by the kernel. We now proceed to describe
both parts of our proof-of-concept implementation.

The Kernel Module. Our kernel module performs
a sequence of write operations each to a different page
offset in a different kernel page. These pages, like
other kernel pages, are not directly accessible to user
code. On older processors, such addresses may be
accessible indirectly via Meltdown. However, we do
not exploit this and assume that the user code does
not or cannot exploit Meltdown.

The Attacker Application. The attacker appli-
cation aims to retrieve kernel information that would
normally be inaccessible outside the kernel. The at-

tacker code first uses mprotect to revoke access to a
page. It then invokes the kernel module to perform
the kernel writes. When the kernel module returns,
the attacker performs a faulty load from the protected
page, before transiently leaking the value through a
covert cache channel.

Increasing the Window for the Faulty Load.
To increase the time window for the faulty load, our
attacker code further delays processing the kernel
store by performing a sequence of store operations
before invoking the kernel module. Store buffer en-
tries are processed and stored in the cache in program
order [2, 3, 18, 25]. Thus, filling the store buffer de-
lays processing of later stores. We further increase
the effect of these store operations by first flushing
the addresses they write to from the cache.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50

R
e
a
d
 A

cc
u
ra

cy
 (

%
)

Number of Stores in the Kernel

Sky Lake
Kaby Lake

Coffee Lake R

Figure 5: Probability of recovering kernel values from
user space as a function of the number of kernel
stores.

Experimental Evaluation. We measure the num-
ber of stores that the kernel needs to perform for
Fallout to be able to recover a value it stores before
returning user space. We use our three Intel machines
with a fully updated Ubuntu 16.04, keeping the kernel
mapped in the process’s address space. Fig. 5 shows

9

the results of our evaluation, where each experiment
is repeated 409,600 times, 100 at each possible page
offset. As the figure shows, after about 10 kernel
writes the attacker can use Fallout to recover a value
written by the kernel on both machines with about
80% probability.

On processors vulnerable to Meltdown, leaving the
kernel mapped in the process’s address space disables
KPTI, allowing Meltdown attacks on the kernel. For
the Coffee Lake R processor, which includes hardware
countermeasures for Meltdown, KPTI is disabled by
default. In particular, the experiments for this pro-
cessor in Fig. 5 are with the default Ubuntu configura-
tion. Ironically, this means that the hardware coun-
termeasures in Intel’s latest CPU generations make
them more vulnerable to Fallout.

5 Using Fallout to Break
KASLR

We now show how Fallout can be used to break Ker-
nel Address Space Layout Randomization (KASLR).

5.1 KASLR Background

Code injection attacks are a type of vulnerability
where the attacker injects code to the address space
of the victim and subsequently diverts the victim’s
control flow to execute the injected code. A common
protection for such attacks is to adopt a policy where
memory pages are either writable or executable, but
never both.

ROP and Return-to-Libc Attacks. Return-to-
libc [46] and return oriented programming (ROP) [44]
are two related techniques that reuse existing code
for exploiting memory corruption vulnerabilities. In
a nutshell, by overwriting the stack, the attacker can
hijack the control flow, and direct execution into gad-
gets that exist in the victim’s code or in linked li-
braries. Shacham [44] demonstrates that a typical li-
brary contains enough gadgets that, when threaded,
can perform arbitrary computation.

ASLR. Address Space Layout Randomization
(ASLR) is a probabilistic countermeasure for ROP.
The main idea is to introduce randomness the in the
victim memory layout, hiding it from the attacker.
That is, when a process is initialized, ASLR ran-
domizes the locations of the code and the data (see
Fig. 6 (top)). With ASLR, the attacker needs to find
the addresses of code gadgets to be able to use them.

0x7FFFFFFFFFFF 0xFFFF800000000000

Kernel Space

Code

Non CanonicalUser Space

0

Code Stack⋯ ⋯⋯

0x7FFFFFFFFFFF 0xFFFF800000000000

Kernel SpaceNon CanonicalUser Space

0

Code Stack⋯ ⋯⋯

0

Kernel Pages
Mapped After

KPTI

Kernel
Start

const

Kernel
Start

const

Kernel Pages
Mapped After

KPTI

Figure 6: (Top) Address space layout with KASLR
but without KPTI. (Bottom) User address space with
KASLR and KPTI. Most of the kernel is not mapped
in the process’s address space anymore.

KASLR on Linux Systems. On Linux systems,
KASLR had been supported since kernel version 3.14
and enabled by default since around 2015. As Jang
et al. [26] note, the amount of entropy present de-
pends on the kernel address range as well as on the
alignment size which is usually multiple of page size.

KASLR and KPTI. As a countermeasure to the
Meltdown attack [33], OSs running on Intel proces-
sors up to the latest Coffee Lake architecture have de-
ployed the Kernel Page Table Isolation (KPTI) mech-
anism, which removes the kernel from the address
space of user processes (see Fig. 6 (bottom)). To al-
low the process to switch to the kernel address space,
the system leaves at least one kernel page in the ad-
dress space of the user process. Because the pages
required for the switch do not contain any secret in-
formation, there is no need to hide it from Meltdown.

The KPTI patch is based on KAISER [14], which
was originally designed to protect the kernel from
side-channel attacks that break KASLR [15, 20, 26].
We now proceed to show that Fallout can reveal the
location of the kernel entry page left in the user ad-
dress space, thereby breaking KASLR.

5.2 Using Fallout to Break Kernel
ASLR

Attack Overview. Our attack is based on the
disparity between the effects of causes of faults (see
Table 1). Specifically, we note that when access-
ing an unmapped kernel page, the WTF optimiza-
tion is not triggered and the Fallout attack fails.
Thus, to perform the attack, we replace the read from

10

attacker page in Line 9 with a read from a page
within the kernel address range. When the page we
access is mapped, Fallout succeeds and we retrieve
a value from the store buffer. Otherwise no value is
retrieved from the store buffer.

Experimental Setup. We evaluate Fallout on
two Intel machines, a Kaby Lake i7-7600U and a Cof-
fee Lake R i9-9900K. Both machines run a fully up-
dated Ubuntu 16.04 system, with all countermeasures
in their default configuration. On both systems, we
empirically test the possible locations on the kernel
in its address space obtaining about 490 locations,
implying about 9 bits of entropy.

Experimental Results. We run the attack 1000
times each, on both the Kaby Lake and the Coffee
Lake machines. Our attack can recover the kernel lo-
cation with 100% accuracy on both machines, within
about 0.27 seconds.

6 Conclusions and Future
Work

Flushing-Based Countermeasures. Because the
store buffer is not shared across hyperthreads, leaks
can only occur when the security domain changes
within a hyperthread. Thus, flushing the store buffer
on security domain change is sufficient to mitigate the
attack. In particular, we verified that using mfence
as part of the switch from kernel mode to user mode
thwarts the attack.

Limitations. As mentioned above, the attacks
described in Section 4 are unable to leak informa-
tion across hyperthreads . Moreover, as Meltdown
software countermeasures (KPTI) flush the buffer on
leaving the kernel, and as the store buffer is automat-
ically flushed on change of the CR3 register (i.e., on
context switch), only latest generation Coffee Lake
R machines are vulnerable to the attack described
in Section 4. Ironically, the hardware mitigations
present in newer generation Coffee Lake R machines
make them more vulnerable to Fallout than older gen-
eration hardware.

Acknowledgments

This research was supported in part by Intel Corpo-
ration. The research presented in this paper was par-
tially supported by the Research Fund KU Leuven.
Jo Van Bulck is supported by a grant of the Research

Foundation – Flanders (FWO). The project was sup-
ported by the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 681402).
It was also supported by the Austrian Research Pro-
motion Agency (FFG) via the K-project DeSSnet,
which is funded in the context of COMET Compe-
tence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia. Additional fund-
ing was provided by a generous gift from Intel. Any
opinions, findings, and conclusions or recommenda-
tions expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding
parties.

References

[1] 2018. Speculative Store Bypass / CVE-
2018-3639 / INTEL-SA-00115. https:

//software.intel.com/security-software-

guidance/software-guidance/speculative-

store-bypass. (2018). [Online; accessed
30-January-2019].

[2] Jeffery M Abramson, Haitham Akkary, An-
drew F Glew, Glenn J Hinton, Kris G Konigs-
feld, and Paul D Madland. 2002. Method and
apparatus for performing a store operation. US
Patent 6,378,062. (April 23 2002).

[3] Jeffrey M Abramson, Haitham Akkary, An-
drew F Glew, Glenn J Hinton, Kris G Konigs-
feld, Paul D Madland, David B Papworth, and
Michael A Fetterman. 1998. Method and Ap-
paratus for Dispatching and Executing a Load
Operation to Memory. US Patent 5,717,882.
(Feb. 10 1998).

[4] ARM Limited. 2018. Vulnerability of Specula-
tive Processors to Cache Timing Side-Channel
Mechanism. (2018). https://developer.arm.

com/support/security-update

[5] Claudio Canella, Jo Van Bulck, Michael
Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. 2018. A System-
atic Evaluation of Transient Execution Attacks
and Defenses. arXiv preprint arXiv:1811.05441
(2018).

[6] Ian Cutress. 2018. Analyzing Core i9-9900K
Performance with Spectre and Meltdown Hard-

11

https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://developer.arm.com/support/security-update
https://developer.arm.com/support/security-update

ware Mitigations. https://www.anandtech.

com/show/13659/analyzing-core-i9-9900k-

performance-with-spectre-and-meltdown-

hardware-mitigations. (2018). [Online;
accessed 30-January-2019].

[7] Craig Disselkoen, David Kohlbrenner,
Leo Porter, and Dean M. Tullsen. 2017.
Prime+Abort: A Timer-Free High-Precision
L3 Cache Attack using Intel TSX. In USENIX
Security. 51–67.

[8] Qian Ge, Yuval Yarom, David Cock, and Ger-
not Heiser. 2018. A Survey of Microarchitec-
tural Timing Attacks and Countermeasures on
Contemporary Hardware. J. Cryptographic En-
gineering 8, 1 (2018), 1–27.

[9] Daniel Genkin, Lev Pachmanov, Eran Tromer,
and Yuval Yarom. 2018. Drive-by Key-
extraction Cache Attacks from Portable Code.
In ACNS. 83–102.

[10] Daniel Genkin, Luke Valenta, and Yuval Yarom.
2017. May the Fourth be with you: A Microar-
chitectural Side Channel Attack on Several Real-
World Applications of Curve25519. In CCS. 845–
858.

[11] Andy Glew, Glenn Hinton, and Akkary
Haitham. 1997. Method and Apparatus for Per-
forming Page Table Walks in a Microprocessor
Capable of Processing Speculative Instructions.
US Patent 5,680,565. (1997).

[12] Brendan Gregg. 2018. KPTI/KAISER Melt-
down Initial Performance Regressions. (2018).
http://www.brendangregg.com/blog/2018-

02-09/kpti-kaiser-meltdown-performance.

html

[13] Daniel Gruss, Julian Lettner, Felix Schuster,
Olga Ohrimenko, István Haller, and Manuel
Costa. 2017. Strong and Efficient Cache Side-
Channel Protection using Hardware Transac-
tional Memory. In USENIX Security. 217–233.

[14] Daniel Gruss, Moritz Lipp, Michael Schwarz,
Richard Fellner, Clémentine Maurice, and Ste-
fan Mangard. 2017. KASLR is Dead: Long Live
KASLR. In ESSoS.

[15] Daniel Gruss, Clmentine Maurice, Anders
Fogh, Moritz Lipp, and Stefan Mangard.
2016. Prefetch Side-Channel Attacks: Bypass-
ing SMAP and Kernel ASLR. In CCS.

[16] Daniel Gruss, Clémentine Maurice, Klaus Wag-
ner, and Stefan Mangard. 2016. Flush+Flush:
A Fast and Stealthy Cache Attack. In DIMVA.

[17] Daniel Gruss, Raphael Spreitzer, and Stefan
Mangard. 2015. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level
Caches. In USENIX Security Symposium.

[18] Sebastien Hily, Zhongying Zhang, and Per Ham-
marlund. 2009. Resolving False Dependencies
of Speculative Load Instructions. US Patent
7.603,527. (2009).

[19] Jann Horn. 2018. Speculative Execution,
Variant 4: Speculative Store Bypass. (2018).
https://bugs.chromium.org/p/project-

zero/issues/detail?id=1528

[20] Ralf Hund, Carsten Willems, and Thorsten Holz.
2013. Practical Timing Side Channel Attacks
against Kernel Space ASLR. In S&P.

[21] Intel. 2018. Intel Analysis of Speculative Ex-
ecution Side Channels. (July 2018). https:

//software.intel.com/security-software-

guidance/api-app/sites/default/files/

336983-Intel-Analysis-of-Speculative-

Execution-Side-Channels-White-Paper.pdf

[22] Intel. 2018. Speculative Execution Side Channel
Mitigations. (May 2018). Revision 3.0.

[23] Intel Corporation 2019. Intel 64 and IA-32 Ar-
chitectures Optimization Reference Manual. In-
tel Corporation.

[24] Alex Ionescu. 2017. Windows 17035 Ker-
nel ASLR/VA Isolation In Practice (like Linux
KAISER). (2017). https://twitter.com/

aionescu/status/930412525111296000

[25] Saad Islam, Ahmad Moghimi, Ida Bruhns,
Moritz Krebbel, Berk Gulmezoglu, Thomas
Eisenbarth, and Berk Sunar. 2019. Spoiler:
Speculative Load Hazards Boost Rowham-
mer and Cache Attacks. arXiv preprint
arXiv:1903.00446 (2019).

[26] Yeongjin Jang, Sangho Lee, and Taesoo Kim.
2016. Breaking Kernel Address Space Layout
Randomization with Intel TSX. In CCS. 380–
392.

12

https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://twitter.com/aionescu/status/930412525111296000
https://twitter.com/aionescu/status/930412525111296000

[27] Vladimir Kiriansky and Carl Waldspurger. 2018.
Speculative Buffer Overflows: Attacks and De-
fenses. arXiv:1807.03757 (2018).

[28] Paul Kocher, Jann Horn, Anders Fogh, Daniel
Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom.
2019. Spectre Attacks: Exploiting Speculative
Execution. In S&P.

[29] Esmaeil Mohammadian Koruyeh, Khaled Kha-
sawneh, Chengyu Song, and Nael Abu-
Ghazaleh. 2018. Spectre Returns! Specula-
tion Attacks using the Return Stack Buffer. In
WOOT.

[30] Steffen Kosinski, Fernando Latorre, Niranjan
Cooray, Stanislav Shwartsman, Ethan Kalifon,
Varun Mohandru, Pedro Lopez, Tom Aviram-
Rosenfeld, Jaroslav Topp, and Li-Gao Zei. 2012.
Store Forwarding for Data Caches. US Patent
9,507,725. (2012).

[31] Jonathan Levin. 2012. Mac OS X and IOS Inter-
nals: To the Apple’s Core. John Wiley & Sons.

[32] Moritz Lipp, Daniel Gruss, Raphael Spreitzer,
Clémentine Maurice, and Stefan Mangard. 2016.
ARMageddon: Cache Attacks on Mobile De-
vices. In USENIX Security Symposium.

[33] Moritz Lipp, Michael Schwarz, Daniel Gruss,
Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Ham-
burg. 2018. Meltdown: Reading Kernel Memory
from User Space. In USENIX Security.

[34] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot
Heiser, and Ruby B. Lee. 2015. Last-Level Cache
Side-Channel Attacks are Practical. In S&P.

[35] LWN. 2017. The Current State of Kernel Page-
Table Isolation. (Dec. 2017). https://lwn.net/
Articles/741878/

[36] Giorgi Maisuradze and Cihristian Rossow. 2018.
ret2spec: Speculative Execution Using Return
Stack Buffers. In CCS.

[37] Julius Mandelblat. Technology Insight: Intels
Next Generation Microarchitecture Code Name
Skylake. In Intel Developer Forum (IDF15).
https://en.wikichip.org/w/images/8/

8f/Technology_Insight_Intel%E2%80%99s_

Next_Generation_Microarchitecture_Code_

Name_Skylake.pdf.

[38] Clémentine Maurice, Manuel Weber, Michael
Schwarz, Lukas Giner, Daniel Gruss, Carlo Al-
berto Boano, Stefan Mangard, and Kay Rmer.
2017. Hello from the Other Side: SSH over Ro-
bust Cache Covert Channels in the Cloud. In
NDSS.

[39] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi,
Ben L Titzer, and Toon Verwaest. 2019. Spec-
tre is Here to Stay: An Analysis of Side-
Channels and Speculative Execution. arXiv
preprint arXiv:1902.05178 (2019).

[40] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
2006. Cache Attacks and Countermeasures: the
Case of AES. In CT-RSA.

[41] Colin Percival. 2005. Cache Missing for Fun and
Profit. In BSDCan.

[42] Michael Schwarz, Moritz Lipp, Daniel
Gruss, Samuel Weiser, Clmentine Maurice,
Raphael Spreitzer, and Stefan Mangard.
2018. KeyDrown: Eliminating Software-Based
Keystroke Timing Side-Channel Attacks. In
NDSS.

[43] Michael Schwarz, Martin Schwarzl, Moritz Lipp,
and Daniel Gruss. 2018. NetSpectre: Read Arbi-
trary Memory over Network. arXiv:1807.10535
(2018).

[44] Hovav Shacham. 2007. The Geometry of Inno-
cent Flesh on the Bone: Return-into-libc With-
out Function Calls (on the x86). In CCS. 552–
561.

[45] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and
Marcus Peinado. 2017. T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave
Programs. In NDSS.

[46] Solar Designer. 1997. Getting around non-
executable stack (and fix). Bugtraq mailing list.
(Aug. 1997).

[47] Julian Stecklina and Thomas Prescher. 2018.
LazyFP: Leaking FPU Register State using Mi-
croarchitectural Side-Channels. arXiv preprint
arXiv:1806.07480 (2018).

13

https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf

[48] Robert M Tomasulo. 1967. An Efficient Algo-
rithm for Exploiting Multiple Arithmetic Units.
IBM Journal of Research and Development 11,
1 (1967), 25–33.

[49] Jo Van Bulck, Marina Minkin, Ofir Weisse,
Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. 2018. Foreshadow:
Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In
USENIX Security Symposium.

[50] Stephan van Schaik, Alyssa Milburn, Sebas-
tian Osterlund, Pietro Frigo, Giorgi Maisuradze,
Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. 2019. RIDL: Rogue In-Flight Data Load.
In S&P.

[51] Ofir Weisse, Jo Van Bulck, Marina Minkin,
Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Raoul Strackx, Thomas F.
Wenisch, and Yuval Yarom. 2018. Foreshadow-
NG: Breaking the Virtual Memory Abstraction
with Transient Out-of-Order Execution. https:
//foreshadowattack.eu/foreshadow-NG.pdf.
(2018).

[52] Yuval Yarom and Katrina Falkner. 2014.
Flush+Reload: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In
USENIX Security. 22–25.

[53] Yuval Yarom, Daniel Genkin, and Nadia
Heninger. 2017. CacheBleed: a timing attack on
OpenSSL constant-time RSA. J. Cryptographic
Engineering 7, 2 (2017), 99–112.

[54] Xiaokuan Zhang, Yuan Xiao, and Yinqian
Zhang. 2016. Return-Oriented Flush-Reload
Side Channels on ARM and Their Implications
for Android Devices. In CCS. 858–870.

14

https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf

	Introduction
	Our Contribution
	Disclosure and Timeline

	Background
	Caches and Cache Attacks
	Superscalar Processors
	The Memory Subsystem
	Transient Execution Attacks
	Exception Creation
	Exception Suppression
	Transactional Memory

	The Write Transient Forwarding Optimization
	A Toy Example
	The Mechanism Behind Fallout
	Measuring the Store Buffer Size

	Using Fallout to Break Kernel Isolation
	Using Fallout to Break KASLR
	KASLR Background
	Using Fallout to Break Kernel ASLR

	Conclusions and Future Work

