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1 Summary 
 

When the instruction, POP SS, is executed with        
debug registers set for break on access to that stack          
location and the following instruction is an INT N, a          
pending #DB will be fired after entering the interrupt         
gate, as it would on most successful branch        
instructions. Other than a non-maskable interrupt or       
perhaps a machine check exception, operating system       
developers are assuming an uninterruptible state      
granted from interrupt gate semantics. This can cause        
OS supervisor software built with these implications       
in mind to erroneously use state information chosen        
by unprivileged software.  
 
On AMD hardware, not only is INT N affected, but          
so is SYSCALL. This means the INT 01 handler can          
be entered on a user stack pointer, since OS software          
has little to no reason to setup an IST or task gate for             
the INT 01 handler. 
 
1.1 Impact 
 

This is a serious security vulnerability and oversight        
made by operating system vendors due to unclear and         
perhaps even incomplete documentation on the      
caveats of the POP SS instruction and its interaction         
with interrupt gate semantics. The following      
depends on OSV implementation, but most if not        
all implement SWAPGS the same way: 
 
For operating systems running on Intel hardware, an        
attacker is able to execute the INT 01 handler with a           
user GSBASE pointer. 
 

The implications are worse for AMD hardware. An        
attacker is able to run the INT 01 handler with a user            
GSBASE pointer and a user stack pointer. 
 
POP SS is exploitable on any operating system where         
the INT 01 handler is not guarded with an IST stack           
(or a TSS based task switch in legacy mode), and          
where the handler makes assumptions about the       
possible previous system state such as if the handler         
was written without NMI semantics. 
 
1.2 Background 
 

The POP SS instruction, much like its relatives (POP         

sreg), is used to load a segment selector into SS, and           
fill the SS attributes accordingly from the       
corresponding GDT or LDT entry. In real-mode, this        
behavior is pretty similar, except that the SS value         
corresponds to the segment base and the remaining        1

attributes are either the CPU reset values, or they         
were set before a transition back to real mode.  
 
Somewhere around the release of the 8086, Intel        
decided to add a special caveat to instructions loading         
the SS register: MOV SS and POP SS. Even though          
system software developers could add interrupt      
guards to code loading SS, Intel added functionality        2

where loading SS with either of the two previously         
mentioned instructions would force the processor to       
disable external interrupts, NMIs, and pending debug       
exceptions until the boundary of the instruction       
following the SS load was reached. For example: 
  
 

1 SS <<= 4 
2 CLI, clear interrupts, and STI, re-enable interrupts 
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xor eax, eax 
 

 

inc rdi  
 

 

mov bx, 50h  
 

 

mov ss, bx 
 

 

mov esp, eax 
 

 

; Recognize pending interrupts 
 
 
; Recognize pending interrupts 
 
 
; Recognize pending interrupts 
 
 
; INTR/NMI and certain #DB     
held 
 
; Recognize pending interrupts    
in architectural order after    
instruction executes 

 
The entire purpose of this functionality was to        
prevent an interrupt from being recognized and taken        
immediately after loading SS, but before loading a        
stack pointer. Hence based on the design of an OS at           
the time, if an interrupt occured, the interrupt would         
probably be taken on a bad stack linear address.  
 
This functionality still remains in today’s      
architecture, even though segmentation is in little use        
today. 
 
Coinciding with the Intel documentation, it should be        
noted that certain Intel CPUs we have tested will take          
an execution-only #DB exception on an instruction       
immediately following an SS load. However, other       
#DB exceptions, such as single steps and hardware        
breakpoints on read or write matches, will be held.         
While some CPUs exhibit this behavior, others do        
not, and this seems to be inline with the SDM          
documentation on this behavior. 
 
Single steps and hardware breakpoints on read or        
write matches were most likely left pending because        
in a typical debugging scenario, they are less        
predictable.  
 
2 The vulnerability 
 

IDT gate descriptors come in 3 main flavors - trap          
gates, interrupt gates, and task gates. Task gates are         

out of scope of this document. The other 2 only have           
one difference between them. 
 
Interrupt gates mask interrupts after the branch       
occurs. This means that the IF bit in EFLAGS is set to            
0. 
 
Trap gates leave EFLAGS.IF as it was on entry. 
 
Interrupt gates are useful in this way, as it allows          
system software designers to bring the CPU into a         
serialized state before handing control off to the        
relevant interrupt handlers. For example, the system       
designer may want to clean the debug registers or         
switch out some selector values. This is important,        
because in the case of an inter-privilege interrupt,        
only SS and CS will be changed.  
 
Furthermore, the designer will likely want some       
quick access to global structures, and will base the         
need to switch off of the previously executing CPL.         
In a modern OS, this would probably be checked by          
the RPL on the stack. Ideally this would be done in a            
non-interruptible scenario, so that software running a       
nested interrupt would not become confused and       
think that since the prior CPL was 0, that it can just            
blindly use certain attributes of the previous state. For         
instance, an example of a standard interrupt gate        
prologue in Windows  can be seen below: 3

 

KiBreakpointTrap proc  
sub rsp, 8 
push rbp 
sub rsp, 158h 
lea rbp, [rsp+80h] 
mov [rbp+TrapInfo.ExceptionActive], 1 
mov [rbp+TrapInfo._Rax], rax 
mov [rbp+TrapInfo._Rcx], rcx 
mov [rbp+TrapInfo._Rdx], rdx 
mov [rbp+TrapInfo._R8], r8 
mov [rbp+TrapInfo._R9], r9 
mov [rbp+TrapInfo._R10], r10 
mov [rbp+TrapInfo._R11], r11 
test byte ptr [rbp+TrapInfo.SegCs], 1 
jz short ExecutingInKernelModeContext 
swapgs 

3 Disassembly taken from ntoskrnl.exe, Windows 
10.0.15063.608 

Page 2 



 

mov r10, gs:_KPCR.Prcb.CurrentThread 
test [r10+_KTHREAD.Header.DebugActive], 80h 
jz short DebugIsActive 
mov ecx, 0C0000102h 
rdmsr 
... 

 
If an interrupt could occur before the handler was         
able to set up a good state, this would spell disaster           
for the assumed state of GSBASE. For instance, if we          
could trigger an interrupt immediately after one       
transitions from CPL 3, but before the SWAPGS        
instruction, we could trick system software into using        
a user GSBASE.  
 
Much like the SYSRET vulnerability , we would need        4

an unexpected interrupt to occur during a software        
serialization point. 
 
A common bad assumption is that when interrupts are         
disabled via EFLAGS.IF, that somehow #DBs fall       
under this category. Hence when IF is 0, either by a           
CLI, or an interrupt gate: a pending #DB, NMI or          
machine check can still occur, and this is the main          
focus of our vulnerability. 
 
Imagine the following instructions, where DR7 and       
DR0 are also set for access on the stack pointer at the            
exact linear address where the POP SS will read it          
from the stack: 
 

; GSBASE would ideally first be primed with        
WRGSBASE in a 64 bit code segment 
 
; Hardware breakpoint (DR0) set to memory       
address where stack is, e.g. 0x401000. 
call SetThreadContext  
 

; Lets imagine that 0x401000 contains a valid SS         
selector. 
mov esp, 401000h 
pop ss 
int 3 

 

4 https://nvd.nist.gov/vuln/detail/CVE-2012-0217 

The #DB will not be immediately recognized after the         
POP SS retires because of the functionality discussed        
earlier. It will be suppressed until after the INT 03          
retires. 
 
The oversight here is that provided INT 03’s DPL is          
accessible from the assumed CPL (here being 3) that         
INT 03 is a simple branch. In Windows, after the          
transition to the INT 03 handler in the kernel,         
EFLAGS.IF will be implicitly cleared since the       
handler was set up by the OS as an interrupt gate. A            
#DB will be recognized after the boundary into the         
INT 03 handler. This is similar to as if we had           
placed a simple JMP after the POP SS above; the #DB           
would be dispatched after the branch retires. 
 
This results in the first instruction of the INT 03          
handler, a CPL 0 CS etc, being pushed onto the stack           
of the INT 01 handler. Since the INT 01 handler          
now thinks that our previous mode was CPL 0, we          
can now run the handler with a GSBASE of whatever          
we set from usermode, but with supervisor level        
access. 
 
We have tested this behavior on Intel hardware with         
the SYSCALL instruction, and instructions that cause       
a fault. In these cases, the #DB seems to be discarded           
entirely. This behavior only occurs if the DPL check         
passes with the interrupt instruction. So, for       
usermode code executing under Windows, this leaves       
us with INT 03 and INT 04 to activate the POP SS            
vulnerability. ICEBP also seems a likely candidate       
here but on all hardware tested, it just multiplexes the          
pending debug exception into DR6 and fires a single         
INT 01. Furthermore, this behavior also does not        
seem to occur with the INTO instruction. This leads         
us to believe that if there is any additional processing,          
the pending debug exception is simply discarded.       
Thus, we have concluded that any INT N instruction         
is vulnerable, provided the DPL check succeeds and        
doesn’t dispatch a #GP instead.  
 
On AMD hardware, the SYSCALL instruction is also        
vulnerable. This means, not only can we run the INT          

01 handler with a GSBASE of choice, but we can run           
it with our desired stack of choice too. This         
GREATLY increases the threat landscape of this       
vulnerability on AMD systems to include arbitrary       
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code execution. Further, if the operating system does        
not enable SMEP, execution of user code could easily         
be achieved. This is because SYSCALL does not        
switch stacks. It is left to the system software to          
perform the serializing state. This means that the INT         

01 handler will be dispatched using a user stack         
pointer. In this case, the attack would be carried out          
as follows: 
 

call SetThreadContext 
mov esp, 401000h 
pop ss 
syscall 

 
Note: If the instruction following a SS load has an          
execute DRx match armed in DR7, it can also trigger          
this behavior provided the read/write match is also        
armed for the stack access. For instance, the INT 01          
will be taken for the execute match, and another         
immediately after since the blocking behavior is       
released. Interestingly enough for this case, this only        
happens when breaking on certain instructions, even       
though these instructions are never executed. 
 
3 Mitigations 
 

It seems, in a way, that this is just a giant oversight.            
INT N as an instruction boils down to a branch.          
System software developers are assuming exclusive      
execution after an interrupt gate, but are still        
vulnerable to the occurence of a #DB in this rare          
circumstance. In all likelihood, we expect Intel and        
AMD to update their instruction specifications to       
make clear note of this edge case. 
 
In the meantime, #DB handlers should be written        
much like a NMI handler, and should SWAPGS        
unconditionally to a known good state regardless of        
the previous mode. Next, the handler needs to know         
if the INT 01 should be treated as a user or kernel            
mode exception. There are a number of ways this         
could be achieved. One idea, would be to set a “last           
known CPL” bit in a privileged space and then         
testing or toggling that bit outside of the boundary         
where a spurious #DB is possible, but before normal         
interrupts are enabled. 
 

This is much like the paranoid entry type in Linux,          
and by default gives Linux kernels an edge to not          
falling prey to this vulnerability, provided that the        
INT 01 handler was built as such. However, whether         
or not the exception should be treated as user or          
kernel generated would still need to be addressed. 
 
Additionally, for operating systems compatible with      
AMD hardware, the INT 01 handler needs not only         
to follow the previously prescribed mitigation, but       
also must use an IST entry for the INT 01 handler on            
x86-64. On x86 legacy, a task gate should be used for           
a known good stack.  
 
Similar to SYSENTER not clearing EFLAGS.TF, the       
INT 01 handler for the AMD mitigation will also         
have to check the instruction pointer pushed onto the         
stack to determine if the exception should be handled         
as user or kernel generated. 
 
 
4 Weaponizing 
 
By discovering and leveraging additional pointer 
leaks within the Windows kernel, we were able to 
load and execute unsigned kernel code. It is 
important to note that the Meltdown vulnerability 
mitigation, hence known as kernel page table 
isolation, changes how the exploit must be carried out 
in order to achieve success. For instance, with KPTI 
on, we were able to load a user crafted CR3 value on 
Windows running on AMD hardware. However on 
Intel, since SYSCALL isn’t vulnerable to a spurious 
#DB, it is difficult to achieve anything if the attack is 
running in a shadowed address space. To follow the 
steps we took to build these attacks, please check the 
slides from our BlackHat 2018 presentation. 
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