

POP SS Vulnerability

Nick Peterson
Everdox Tech LLC
everdox@gmail.com
nickeverdox
everdox

Nemanja Mulasmajic
triplefault.io
nm@triplefault.io
0xNemi
0xNemi

1 Summary

When the instruction, POP SS, is executed with
debug registers set for break on access to that stack
location and the following instruction is an INT N, a
pending #DB will be fired after entering the interrupt
gate, as it would on most successful branch
instructions. Other than a non-maskable interrupt or
perhaps a machine check exception, operating system
developers are assuming an uninterruptible state
granted from interrupt gate semantics. This can cause
OS supervisor software built with these implications
in mind to erroneously use state information chosen
by unprivileged software.

On AMD hardware, not only is INT N affected, but
so is SYSCALL. This means the INT 01 handler can
be entered on a user stack pointer, since OS software
has little to no reason to setup an IST or task gate for
the INT 01 handler.

1.1 Impact

This is a serious security vulnerability and oversight
made by operating system vendors due to unclear and
perhaps even incomplete documentation on the
caveats of the POP SS instruction and its interaction
with interrupt gate semantics. The following
depends on OSV implementation, but most if not
all implement SWAPGS the same way:

For operating systems running on Intel hardware, an
attacker is able to execute the INT 01 handler with a
user GSBASE pointer.

The implications are worse for AMD hardware. An
attacker is able to run the INT 01 handler with a user
GSBASE pointer and a user stack pointer.

POP SS is exploitable on any operating system where
the INT 01 handler is not guarded with an IST stack
(or a TSS based task switch in legacy mode), and
where the handler makes assumptions about the
possible previous system state such as if the handler
was written without NMI semantics.

1.2 Background

The POP SS instruction, much like its relatives (POP

sreg), is used to load a segment selector into SS, and
fill the SS attributes accordingly from the
corresponding GDT or LDT entry. In real-mode, this
behavior is pretty similar, except that the SS value
corresponds to the segment base and the remaining 1

attributes are either the CPU reset values, or they
were set before a transition back to real mode.

Somewhere around the release of the 8086, Intel
decided to add a special caveat to instructions loading
the SS register: MOV SS and POP SS. Even though
system software developers could add interrupt
guards to code loading SS, Intel added functionality 2

where loading SS with either of the two previously
mentioned instructions would force the processor to
disable external interrupts, NMIs, and pending debug
exceptions until the boundary of the instruction
following the SS load was reached. For example:

1 SS <<= 4
2 CLI, clear interrupts, and STI, re-enable interrupts

Page 1

mailto:everdox@gmail.com
https://twitter.com/nickeverdox
https://www.linkedin.com/in/everdox/
mailto:nm@triplefault.io
https://twitter.com/0xNemi
https://www.linkedin.com/in/0xNemi

xor eax, eax

inc rdi

mov bx, 50h

mov ss, bx

mov esp, eax

; Recognize pending interrupts

; Recognize pending interrupts

; Recognize pending interrupts

; INTR/NMI and certain #DB
held

; Recognize pending interrupts
in architectural order after
instruction executes

The entire purpose of this functionality was to
prevent an interrupt from being recognized and taken
immediately after loading SS, but before loading a
stack pointer. Hence based on the design of an OS at
the time, if an interrupt occured, the interrupt would
probably be taken on a bad stack linear address.

This functionality still remains in today’s
architecture, even though segmentation is in little use
today.

Coinciding with the Intel documentation, it should be
noted that certain Intel CPUs we have tested will take
an execution-only #DB exception on an instruction
immediately following an SS load. However, other
#DB exceptions, such as single steps and hardware
breakpoints on read or write matches, will be held.
While some CPUs exhibit this behavior, others do
not, and this seems to be inline with the SDM
documentation on this behavior.

Single steps and hardware breakpoints on read or
write matches were most likely left pending because
in a typical debugging scenario, they are less
predictable.

2 The vulnerability

IDT gate descriptors come in 3 main flavors - trap
gates, interrupt gates, and task gates. Task gates are

out of scope of this document. The other 2 only have
one difference between them.

Interrupt gates mask interrupts after the branch
occurs. This means that the IF bit in EFLAGS is set to
0.

Trap gates leave EFLAGS.IF as it was on entry.

Interrupt gates are useful in this way, as it allows
system software designers to bring the CPU into a
serialized state before handing control off to the
relevant interrupt handlers. For example, the system
designer may want to clean the debug registers or
switch out some selector values. This is important,
because in the case of an inter-privilege interrupt,
only SS and CS will be changed.

Furthermore, the designer will likely want some
quick access to global structures, and will base the
need to switch off of the previously executing CPL.
In a modern OS, this would probably be checked by
the RPL on the stack. Ideally this would be done in a
non-interruptible scenario, so that software running a
nested interrupt would not become confused and
think that since the prior CPL was 0, that it can just
blindly use certain attributes of the previous state. For
instance, an example of a standard interrupt gate
prologue in Windows can be seen below: 3

KiBreakpointTrap proc
sub rsp, 8
push rbp
sub rsp, 158h
lea rbp, [rsp+80h]
mov [rbp+TrapInfo.ExceptionActive], 1
mov [rbp+TrapInfo._Rax], rax
mov [rbp+TrapInfo._Rcx], rcx
mov [rbp+TrapInfo._Rdx], rdx
mov [rbp+TrapInfo._R8], r8
mov [rbp+TrapInfo._R9], r9
mov [rbp+TrapInfo._R10], r10
mov [rbp+TrapInfo._R11], r11
test byte ptr [rbp+TrapInfo.SegCs], 1
jz short ExecutingInKernelModeContext
swapgs

3 Disassembly taken from ntoskrnl.exe, Windows
10.0.15063.608

Page 2

mov r10, gs:_KPCR.Prcb.CurrentThread
test [r10+_KTHREAD.Header.DebugActive], 80h
jz short DebugIsActive
mov ecx, 0C0000102h
rdmsr
...

If an interrupt could occur before the handler was
able to set up a good state, this would spell disaster
for the assumed state of GSBASE. For instance, if we
could trigger an interrupt immediately after one
transitions from CPL 3, but before the SWAPGS
instruction, we could trick system software into using
a user GSBASE.

Much like the SYSRET vulnerability , we would need 4

an unexpected interrupt to occur during a software
serialization point.

A common bad assumption is that when interrupts are
disabled via EFLAGS.IF, that somehow #DBs fall
under this category. Hence when IF is 0, either by a
CLI, or an interrupt gate: a pending #DB, NMI or
machine check can still occur, and this is the main
focus of our vulnerability.

Imagine the following instructions, where DR7 and
DR0 are also set for access on the stack pointer at the
exact linear address where the POP SS will read it
from the stack:

; GSBASE would ideally first be primed with
WRGSBASE in a 64 bit code segment

; Hardware breakpoint (DR0) set to memory
address where stack is, e.g. 0x401000.
call SetThreadContext

; Lets imagine that 0x401000 contains a valid SS
selector.
mov esp, 401000h
pop ss
int 3

4 https://nvd.nist.gov/vuln/detail/CVE-2012-0217

The #DB will not be immediately recognized after the
POP SS retires because of the functionality discussed
earlier. It will be suppressed until after the INT 03
retires.

The oversight here is that provided INT 03’s DPL is
accessible from the assumed CPL (here being 3) that
INT 03 is a simple branch. In Windows, after the
transition to the INT 03 handler in the kernel,
EFLAGS.IF will be implicitly cleared since the
handler was set up by the OS as an interrupt gate. A
#DB will be recognized after the boundary into the
INT 03 handler. This is similar to as if we had
placed a simple JMP after the POP SS above; the #DB
would be dispatched after the branch retires.

This results in the first instruction of the INT 03
handler, a CPL 0 CS etc, being pushed onto the stack
of the INT 01 handler. Since the INT 01 handler
now thinks that our previous mode was CPL 0, we
can now run the handler with a GSBASE of whatever
we set from usermode, but with supervisor level
access.

We have tested this behavior on Intel hardware with
the SYSCALL instruction, and instructions that cause
a fault. In these cases, the #DB seems to be discarded
entirely. This behavior only occurs if the DPL check
passes with the interrupt instruction. So, for
usermode code executing under Windows, this leaves
us with INT 03 and INT 04 to activate the POP SS
vulnerability. ICEBP also seems a likely candidate
here but on all hardware tested, it just multiplexes the
pending debug exception into DR6 and fires a single
INT 01. Furthermore, this behavior also does not
seem to occur with the INTO instruction. This leads
us to believe that if there is any additional processing,
the pending debug exception is simply discarded.
Thus, we have concluded that any INT N instruction
is vulnerable, provided the DPL check succeeds and
doesn’t dispatch a #GP instead.

On AMD hardware, the SYSCALL instruction is also
vulnerable. This means, not only can we run the INT

01 handler with a GSBASE of choice, but we can run
it with our desired stack of choice too. This
GREATLY increases the threat landscape of this
vulnerability on AMD systems to include arbitrary

Page 3

https://nvd.nist.gov/vuln/detail/CVE-2012-0217

code execution. Further, if the operating system does
not enable SMEP, execution of user code could easily
be achieved. This is because SYSCALL does not
switch stacks. It is left to the system software to
perform the serializing state. This means that the INT

01 handler will be dispatched using a user stack
pointer. In this case, the attack would be carried out
as follows:

call SetThreadContext
mov esp, 401000h
pop ss
syscall

Note: If the instruction following a SS load has an
execute DRx match armed in DR7, it can also trigger
this behavior provided the read/write match is also
armed for the stack access. For instance, the INT 01
will be taken for the execute match, and another
immediately after since the blocking behavior is
released. Interestingly enough for this case, this only
happens when breaking on certain instructions, even
though these instructions are never executed.

3 Mitigations

It seems, in a way, that this is just a giant oversight.
INT N as an instruction boils down to a branch.
System software developers are assuming exclusive
execution after an interrupt gate, but are still
vulnerable to the occurence of a #DB in this rare
circumstance. In all likelihood, we expect Intel and
AMD to update their instruction specifications to
make clear note of this edge case.

In the meantime, #DB handlers should be written
much like a NMI handler, and should SWAPGS
unconditionally to a known good state regardless of
the previous mode. Next, the handler needs to know
if the INT 01 should be treated as a user or kernel
mode exception. There are a number of ways this
could be achieved. One idea, would be to set a “last
known CPL” bit in a privileged space and then
testing or toggling that bit outside of the boundary
where a spurious #DB is possible, but before normal
interrupts are enabled.

This is much like the paranoid entry type in Linux,
and by default gives Linux kernels an edge to not
falling prey to this vulnerability, provided that the
INT 01 handler was built as such. However, whether
or not the exception should be treated as user or
kernel generated would still need to be addressed.

Additionally, for operating systems compatible with
AMD hardware, the INT 01 handler needs not only
to follow the previously prescribed mitigation, but
also must use an IST entry for the INT 01 handler on
x86-64. On x86 legacy, a task gate should be used for
a known good stack.

Similar to SYSENTER not clearing EFLAGS.TF, the
INT 01 handler for the AMD mitigation will also
have to check the instruction pointer pushed onto the
stack to determine if the exception should be handled
as user or kernel generated.

4 Weaponizing

By discovering and leveraging additional pointer
leaks within the Windows kernel, we were able to
load and execute unsigned kernel code. It is
important to note that the Meltdown vulnerability
mitigation, hence known as kernel page table
isolation, changes how the exploit must be carried out
in order to achieve success. For instance, with KPTI
on, we were able to load a user crafted CR3 value on
Windows running on AMD hardware. However on
Intel, since SYSCALL isn’t vulnerable to a spurious
#DB, it is difficult to achieve anything if the attack is
running in a shadowed address space. To follow the
steps we took to build these attacks, please check the
slides from our BlackHat 2018 presentation.

Page 4

