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The ability to learn and generalize from a few examples is a 
hallmark of human intelligence (1). CAPTCHAs, images used 
by websites to block automated interactions, are examples of 
problems that are easy for humans but difficult for comput-
ers. CAPTCHAs are hard for algorithms because they add 
clutter and crowd letters together to create a chicken-and-egg 
problem for character classifiers — the classifiers work well 
for characters that have been segmented out, but segmenting 
the individual characters requires an understanding of the 
characters, each of which might be rendered in a combinato-
rial number of ways (2–5). A recent deep-learning approach 
for parsing one specific CAPTCHA style required millions of 
labeled examples from it (6), and earlier approaches mostly 
relied on hand-crafted style-specific heuristics to segment out 
the character (3, 7); whereas humans can solve new styles 
without explicit training (Fig. 1A). The wide variety of ways 
in which letterforms could be rendered and still be under-
stood by people is illustrated in Fig. 1. 

Building models that generalize well beyond their train-
ing distribution is an important step toward the flexibility 
Douglas Hofstadter envisioned when he said that “for any 
program to handle letterforms with the flexibility that human 
beings do, it would have to possess full-scale artificial intelli-
gence” (8). Many researchers have conjectured that this could 
be achieved by incorporating the inductive biases of the vis-
ual cortex (9–12), utilizing the wealth of data generated by 
neuroscience and cognitive science research. In the mamma-
lian brain, feedback connections in the visual cortex play 
roles in figure-ground-segmentation, and in object-based top-
down attention that isolates the contours of an object even 

when partially transparent objects occupy the same spatial 
locations (13–16). Lateral connections in the visual cortex are 
implicated in enforcing contour continuity (17, 18). Contours 
and surfaces are represented using separate mechanisms that 
interact (19–21), enabling the recognition and imagination of 
objects with unusual appearance – for example a chair made 
of ice. The timing and topography of cortical activations give 
clues about contour-surface representations and inference al-
gorithms (22, 23). These insights based on cortical function 
are yet to be incorporated into leading machine learning 
models. 

We introduce a hierarchical model called the Recursive 
Cortical Network (RCN) that incorporates these neuroscience 
insights in a structured probabilistic generative model frame-
work (5, 24–27). 

In addition to developing RCN and its learning and infer-
ence algorithms, we applied the model to a variety of visual 
cognition tasks that required generalizing from one or a few 
training examples: parsing of CAPTCHAs, one-shot and few-
shot recognition and generation of handwritten digits, occlu-
sion reasoning, and scene text recognition. We then com-
pared its performance to state of the art models. 
 
Recursive cortical network 
RCN builds on existing compositional models (24, 28–32) in 
important ways [section 6 of (33)]. Although grammar based 
models (24) have the advantage of being based on well-
known ideas from linguistics, they either limit interpreta-
tions to single trees or are computationally infeasible when 
using attributed relations (32). The seminal work on AND-OR 
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templates and tree-structured compositional models (34) has 
the advantage of simplified inference, but is lacking in selec-
tivity owing to the absence of lateral constraints (35). Models 
from another important class (25, 29) use lateral constraints, 
but rather than gradually building invariance through a pool-
ing structure (36), they use parametric transformations for 
complete scale, rotation and translation invariance at each 
level. Custom inference algorithms are required, but those 
are not effective in propagating the effect of lateral con-
straints beyond local interactions. The representation of con-
tours and surfaces in (37) do not model their interactions, 
choosing instead to model these as independent mechanisms. 
RCNs and Composition Machines (CM) (32) share the moti-
vation of placing compositional model ideas in a graphical 
model formulation. However, CM’s representational choice of 
“composed distributions” — using a single layer of random 
variables to collapse feature-detection, pooling and lateral co-
ordination — leads to an expanded state space, which in turn 
constrains the model to a greedy inference and parsing pro-
cess. In general, because of the varied and conflicting repre-
sentational choices, inference in compositional models has 
relied on custom-crafted methods for different model instan-
tiations, including solving stochastic partial differential equa-
tions (30), sampling based algorithms (24), and pruned 
dynamic programming (29). 

RCN integrates and builds upon various ideas from com-
positional models — hierarchical composition, gradual build-
ing of invariances, lateral connections for selectivity, contour-
surface factorization and joint-explanation based parsing — 
into a structured probabilistic graphical model such that Be-
lief Propagation (38) can be used as the primary approximate 
inference engine [section 6 of (33)]. Experimental neurosci-
ence data provided important guidance on the representa-
tional choices [section 7 of (33)], which were then confirmed 
to be beneficial using experimental studies. We now discuss 
the representation of RCN and its inference and learning al-
gorithms. Mathematical details are discussed in sections 2 to 
5 of (33). 
 
Representation 
In RCN, objects are modeled as a combination of contours 
and surfaces (Fig. 2A). Contours appear at the boundaries of 
surfaces, both at the outline of objects and at the border be-
tween the surfaces that compose the object. Surfaces are 
modeled using a Conditional Random Field (CRF) which cap-
tures the smoothness of variations of surface properties. Con-
tours are modeled using a compositional hierarchy of 
features (28, 39). Factored representation of contours (shape) 
and surfaces (appearance) enables the model to recognize ob-
ject shapes with dramatically different appearances without 
training exhaustively on every possible shape and appearance 
combination. We now describe the shape and appearance 

representations in detail. 
Figure 2B shows two subnetworks (black and blue) within 

a level of the RCN contour hierarchy. The filled and empty 
circular nodes in the graph are binary random variables that 
correspond to features and pools respectively. Each feature 
node encodes an AND relation of its child pools, and each 
pool variable encodes the OR of its child features, similar to 
AND-OR graphs (34). Lateral constraints, represented as rec-
tangular “factor nodes”, coordinate the choices between the 
pools they connect to. The two subnetworks, which can cor-
respond to two objects or object parts, share lower level-fea-
tures. 

Figure 2C shows a three-level network that represents the 
contours of a square. The features at the lowest, intermediate 
and top levels respectively represent line segments, corners 
and the entire square. Each pool variable pools over different 
deformations, small translations, scale changes etc., of a “cen-
tered” feature, thus introducing the corresponding invari-
ances. Without the lateral connections between the pools (the 
gray squares in Fig. 2C), generating from a feature node rep-
resenting a corner can create misaligned line segments, as 
shown in Fig. 3A. Lateral connections between the pools pro-
vide selectivity (35) by ensuring that the choice of a feature 
in one pool affects the choice of features in pools it is con-
nected to, creating samples where the contours vary more 
smoothly. The flexibility of lateral constraints is controlled 
through perturb-factor, a hyperparameter that is specified 
per level. Through multiple layers of feature pooling, lateral 
connections, and compositions, a feature node at the top level 
comes to represent an object that can be recognized with 
some level of translation, scale and deformation invariance. 

Multiple objects are represented in the same shape hier-
archy by sharing their parts (Fig. 2B). When multiple parents 
converge on a single child feature (feature node “e” in Fig. 
2B), this will be active when any parent is active (OR-gate in 
the graphical model), and the child feature is allowed to be 
part of both parents if evidence allows, unlike the exclusive 
sharing in AND-OR graph grammars (24). Even when two 
higher-level features share some of the same lower-level fea-
tures and pools, the higher-level features’ lateral networks are 
kept separate by making copies of the lower-level feature for 
each specific higher-level feature it participates in, as shown 
in Fig. 2B. Parent-specific copies of lateral networks serve to 
achieve higher-order interactions compared to pairwise con-
nections, similar to the state copying mechanism used in 
higher-order networks (40). This was also found to be im-
portant for message-passing to achieve accurate results and 
is reminiscent of techniques used in dual decomposition (41). 
Hierarchy in the RCN network plays two roles. First, it ena-
bles the representation of deformations gradually through 
multiple levels, spreading the amount of variation across lay-
ers (Fig. 3B). Second, hierarchy provides efficiency through 
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the sharing of features between different objects (42). Both of 
these result in efficient learning and inference through 
shared computations. 

Surfaces are modeled using a pairwise CRF (Fig. 3C). Lo-
cal surface patch properties like color, texture, or surface nor-
mal are represented by categorical variables, whose 
smoothness of variation is enforced by the lateral factors 
(gray squares in Fig. 2). Contours generated by the contour-
hierarchy interact with the surface CRF in a specific way: con-
tours signal the breaks in continuity of surfaces that occur 
both within an object and between the object and its back-
ground, a representational choice inspired by neurobiology 
(19). Figure 3, B and D, shows samples generated from an 
RCN. 
 
Inference 
In order to parse a scene, RCN maintains hierarchical graphs 
for multiple object instances at multiple locations tiling the 
scene. The parse of a scene can be obtained via maximum a 
posteriori (MAP) inference on this complex graph, which re-
covers the best joint configuration including object identities 
and their segmentations [section 4 of (33)]. Although the 
RCN network is extremely loopy, we found that message-
passing (38), with a schedule that is inspired by the timing of 
activations in the visual cortex (9, 20), resulted in fast and 
accurate inference. An input image is first passed through 
PreProc, which converts pixel values to edge likelihoods using 
a bank of Gabor-like filters. Partial assignments that corre-
spond to object hypotheses are then identified using a for-
ward and backward message passing in the network, and a 
complete approximate MAP solution is found by solving the 
scene-parsing problem on the graph of object hypotheses 
(Fig. 4). The forward pass gives an upper-bound on the log-
probability of the nodes at the top level. The backward pass 
visits the high-scoring forward-pass hypotheses one by one, 
in a manner similar to a top-down attention process (43, 44), 
running a conditional inference that assumes that all other 
nodes are off to find an approximate MAP configuration for 
the object (Fig. 4A). The backward pass can reject many ob-
ject hypotheses that were falsely identified in the forward 
pass. 

The global MAP configuration is a subset of all the object 
hypotheses generated from the forward and backward passes. 
The number of objects in the scene is inferred as part of this 
MAP solution. In addition to searching over an exponentially 
large number of subsets, finding the global MAP requires rea-
soning about high-order interactions between different hy-
potheses. We developed an approximate dynamic 
programming (DP) method that solves this in linear time. The 
DP algorithm exploits the fact that each object hypothesis oc-
cupies a contiguous region that can be represented as a 2d 

mask on the input image. By considering combinations of ob-
ject hypotheses, i.e., parses, that produce spatially contiguous 
masks when their 2d-masks overlap, we create a topological 
ordering of the parses by sorting them according to masks 
that are contained in other masks. This results in a recursive 
computation of the score where only a linear number of can-
didate parses need to be evaluated in searching for the best 
parse. See section 4.7 of (33) for more details. 
 
Learning 
Features and lateral connections up to the penultimate level 
of the network are trained unsupervised using a generic 3D 
object data set that is task agnostic and rendered only as con-
tour images. The resulting learned features vary from simple 
line segments at the lower levels to curves and corners at the 
higher levels. 

Consider a partially learned model, where new features 
are being learned at level k, where features up to level k-1 
have already been learned and finalized, and a few features 
have been learned at level k (Fig. 4B). When a training image 
is presented, the first step is to find a MAP explanation for 
the contours of that image using the existing features at level 
k. This is identical to the inference problem described earlier 
of finding the MAP solution for a scene. The contours that 
remain unexplained are parsed using features at level k-1, and 
new features are proposed from their contour-continuous 
conjunctions. Repeating this process for all the training im-
ages accumulates counts on the usage of different features at 
level k, and the final features for this level are selected by 
optimizing an objective function that balances compression 
and reconstruction error (31). The same process is repeated 
level-by-level [see section 5.1 of (33)]. 

The lateral graph structure, which specifies the connectiv-
ity between pool pairs, is learned from the contour connec-
tivity of input images. At the first pooling level, pools with 
features that are adjacent in the input contours are connected 
with each other. This process is repeated recursively in the 
hierarchy where lateral connections at the higher levels are 
inferred from adjacency in the lower-level graphs. 

Features at the topmost level represent whole objects. 
These are obtained by finding the MAP configuration of a 
new object up to the penultimate level of the network, con-
necting pool pairs at the penultimate level according to the 
contour continuity of the input object, and then storing the 
conjunction of activations at the penultimate level as a fea-
ture in the top-most level. See section 5 of (33) for details. 

Once the set of lower-level features and lateral connec-
tions are trained, they can be used for different domains by 
tuning a few hyper-parameters [section 8.3 of (33)]. The filter 
scales in the PreProc are chosen depending on the image and 
object size, and the flexibility of the lateral connections is set 
to match the distortions in the data. In addition, the features 
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at the lowest level have a “smoothing parameter” that sets an 
estimate on the probability that an edge pixel is ON owing to 
noise. This parameter can be set according to the noise levels 
in a domain. 
 
Results 
A CAPTCHA is considered broken if it can be automatically 
solved at a rate above 1% (3). RCN was effective in breaking 
a wide variety of text-based CAPTCHAs with very little train-
ing data, and without using CAPTCHA-specific heuristics 
(Fig. 5). It was able to solve reCAPTCHAs at an accuracy rate 
of 66.6% (character level accuracy of 94.3%), BotDetect at 
64.4%, Yahoo at 57.4% and PayPal at 57.1%, significantly 
above the 1% rate at which CAPTCHAs are considered inef-
fective (3). The only differences in architecture across differ-
ent CAPTCHA tasks are the sets of clean fonts used for 
training and the different choices of a few hyper-parameters, 
which depend on the size of the CAPTCHA image and the 
amount of clutter and deformations. These parameters are 
straightforward to set by hand, or can be tuned automatically 
via cross validation on an annotated CAPTCHA set. Noisy, 
cluttered and deformed examples from the CAPTCHAs were 
not used for training, yet RCN was effective in generalizing 
to those variations. 

For reCAPTCHA parsing at 66.6% accuracy, RCN required 
only five clean training examples per character. The model 
uses three parameters that affect how single characters are 
combined together to read out a string of characters, and 
these parameters were both independent of the length of the 
CAPTCHAs and were robust to the spacing of the characters 
[Fig. 5B and section 8.4 of (33)]. In addition to obtaining a 
transcription of the CAPTCHA, the model also provides a 
highly accurate segmentation into individual characters, as 
shown in Fig. 5A. To compare, human accuracy on reCAP-
TCHA is 87.4%. Because many input images have multiple 
valid interpretations (Fig. 5A), parses from two humans agree 
only 81% of the time. 

In comparison to RCNs, a state-of-the-art CNN (6) re-
quired a 50,000-fold larger training set of actual CAPTCHA 
strings, and it was less robust to perturbations to the input. 
Because the CNN required a large number of labeled exam-
ples, this control study used a CAPTCHA-generator that we 
created to emulate the appearance of reCAPTCHAs [see sec-
tion 8.4.3 of (33)]. The approach used a bank of position-spe-
cific CNNs, each trained to discriminate the letter at a 
particular position. Training the CNNs to achieve a word-ac-
curacy rate of 89.9% required over 2.3 million unique train-
ing images, created using translated crops for data 
augmentation, from 79,000 distinct CAPTCHA words. The re-
sulting network fails on string lengths not present during 
training, and more importantly, the recognition accuracy of 

the network deteriorates rapidly with even minor perturba-
tions to the spacing of characters that are barely perceptible 
to humans – 15% more spacing reduced accuracy to 38.4%, 
and 25% more spacing reduced accuracy to just 7%. This sug-
gests that the deep-learning method learned to exploit the 
specifics of a particular CAPTCHA rather than learning mod-
els of characters that are then used for parsing the scene. For 
RCN, increasing the spacing of the characters results in an 
improvement in the recognition accuracy (Fig. 5B). 

The wide variety of character appearances in BotDetect 
(Fig. 5C) demonstrates why the factorization of contours and 
surfaces is important: models without this factorization 
could latch on to the specific appearance details of a font, 
thereby limiting their generalization. The RCN results are 
based on testing on 10 different styles of CAPTCHAs from 
BotDetect, all parsed based on a single network trained on 24 
training example per character, and using the same parsing 
parameters across all styles. Although BotDetect CAPTCHAs 
can be parsed using contour information alone, using the ap-
pearance information boosted the accuracy from 61.8% to 
64.4%, using the same appearance model across all data sets. 
See section 8.4.6 of (33) for more details. 

RCN outperformed other models on one-shot and few-
shot classification tasks on the standard MNIST handwritten 
digit data set [section 8.7 of (33)]. We compared RCN’s clas-
sification performance on MNIST as we varied the number of 
training examples from 1 to 100 per category. CNN compari-
sons were made with two state-of-the art models, a LeNet-5 
(45) and the VGG-fc6 CNN (46) with its levels pre-trained for 
ImageNet (47) classification using millions of images. The 
fully-connected-layer fc6 of VGG-CNN was chosen for com-
parison because it gave the best results for this task compared 
to other pre-trained levels of the VGG-CNN, and compared to 
other pre-trained CNNs that used the same data set and edge 
pre-processing as RCN [section 5.1 of (33)]. In addition, we 
compared against the Compositional Patch Model (48) that 
recently reported state-of-the-art performance on this task. 
RCN outperformed the CNNs and the CPM (Fig. 6A). The one-
shot recognition performance of RCN was 76.6% vs 68.9% for 
CPM and 54.2% for VGG-fc6. RCN was also robust to different 
forms of clutter that were introduced during testing, without 
having to expose the network to those transformations dur-
ing training. In comparison, such out-of-sample test exam-
ples had a large detrimental effect on the generalization 
performance of CNNs (Fig. 6B). To isolate the contributions 
of lateral connections, forward pass, and backward pass to 
RCN’s accuracy, we conducted lesion studies that selectively 
turned off these mechanisms. The results, summarized in Fig. 
6C, show that all these mechanisms contribute significantly 
toward the performance of RCNs. RCN networks with two 
levels of feature detection and pooling were sufficient to get 
the best accuracy performance on character parsing tasks. 
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The effect of increasing the number of levels in the hierarchy 
is to reduce the inference time as detailed in section 8.11 of 
(33). 

As a generative model, RCN outperformed Variational 
Auto Encoders (VAE) (49) and DRAW (50) on reconstructing 
corrupted MNIST images (Fig. 7, A and B). DRAW’s ad-
vantage over RCN for the clean test set is not surprising be-
cause DRAW is learning an overly flexible model that almost 
copies the input image in the reconstruction, which hurts its 
performance on more cluttered data sets [section 8.9 of (33)]. 
On the Omniglot data (1), examples generated from RCN after 
one-shot training showed significant variations, while still 
being identifiable as the original category [Fig. 7D and sec-
tion 8.6 of (33)]. 

To test occlusion reasoning (51–53) we created a variant 
of the MNIST data set by adding a rectangle to each valida-
tion/test image such that some parts of the digit were oc-
cluded by the rectangle and some parts of the rectangle were 
occluded by the digit [Fig. 7C and section 8.8 of (33)]. Occlu-
sion relationships in these images cannot be deduced as a 
simple layering of one object in front of the other. Classifica-
tion on this data set is challenging because many parts of the 
digit are occluded by the rectangle, and because the rectangle 
acts as clutter. If the rectangle is detected and segmented out, 
its effect on the evidence for a particular digit can be ex-
plained away using the RCN generative model, thereby im-
proving the accuracy of classification and segmentation. RCN 
was tested for classification accuracy and for occlusion rea-
soning on this challenging data set. Classification accuracy 
without explaining away was 47.0%. Explaining away the rec-
tangle boosts the classification accuracy to 80.7%. In addi-
tion, RCN was used to parse the scene by reasoning about the 
occlusion relation between the rectangle and the digit. The 
model was successful at predicting the precise occlusion re-
lations of the test image as shown in Fig. 7C, obtaining a 
mean intersection over union (IOU) of 0.353 measured over 
the occluded regions. 

Last, RCN was tested on the ICDAR-13 Robust Reading 
data set (54), a benchmark for text recognition in real world 
images (Fig. 7E). For this test, we enhanced the parsing algo-
rithm to include prior knowledge about n-gram and word sta-
tistics, and about geometric priors related to the layout of 
letters in a scene, which includes spacing, relative sizes and 
appearance consistency [see section 8.5 of (33)]. We com-
pared our result against top participants of the ICDAR com-
petition, and against a recent deep learning approach (55) 
(Table 1). The RCN model outperformed the top contender, 
PhotoOCR, by 1.9%, despite PhotoOCR using 7.9 million 
training images, whereas RCN used 1,406 training images se-
lected using model-based clustering from 25,584 font images. 
RCN achieved better accuracy on this task while being 300 
times more data efficient, in addition to providing a detailed 

segmentation of the characters (Fig. 7E) that the competing 
methods do not provide. 
 
Discussion 
Segmentation resistance, the primary defense of text-based 
CAPTCHAs, has been a general principle that enabled their 
automated generation (2, 3). Although specific CAPTCHAs 
have been broken before using style-specific segmentation 
heuristics (3, 7), those attacks could be foiled easily by minor 
alterations to CAPTCHAs. RCN breaks the segmentation de-
fense in a fundamental way and with very little training data, 
which suggests that websites should move to more robust 
mechanisms for blocking bots. 

Compositional models have been successfully used in the 
past for generic object recognition and scene parsing, and our 
preliminary experiments [section 8.12 of (33)] indicate that 
RCN could be applicable in those domains as well (Fig. 8). 
The RCN formulation opens up compositional models to a 
wider array of advanced inference and learning algorithms 
developed in graphical models, potentially leading to im-
provements that build on their prior successes in real-world 
scene parsing (56, 57). Despite the advantage of being a gen-
erative model, RCN needs several improvements to achieve 
superior performance on ImageNet-scale (47) data sets. Flex-
ible merging of multiple instances, the use of surface appear-
ance at all levels of the hierarchy during forward and 
backward inference, more sophisticated pooling structures 
that learn to pool over 3D transformations, and generative 
modeling of scene context and background are problems that 
need to be investigated and integrated with RCN [section 8.13 
of (33)]. 

The high data efficiency of RCN, compared to whole-im-
age models like CNNs and VAEs, derives from the fact that 
RCN encodes strong assumptions in its structure. Recent 
neural networks models incorporate ideas of compositional-
ity using a spatial attention window (58), but their current 
instantiations need good separation between the objects in 
an uncluttered setting because each attention window is 
modeled using a whole-image VAE. Incorporation of RCN’s 
object and part-based compositionality into neural network 
models would be an interesting research direction. Unlike 
neural networks, the current version of RCN learning algo-
rithms need clean training data, a drawback we intend to ad-
dress using gradient based learning as well as message-
passing based approaches (59). 

Combining RCN with Bayesian Program Learning (BPL) 
(1) is another avenue for future investigations. BPL has the 
advantage of precisely modeling the sequential causal mech-
anisms, e.g., the stroke generation in the Omniglot data set, 
but its inference depends on the contours being separated 
from the background – something RCN can easily provide. 
More generally, BPL and RCN-like graphical models could be 
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combined to obtain the expressive power and efficient infer-
ence required to model the parallel and sequential processes 
(60) involved in perception and cognition. 

Of course, Douglas Hofstadter’s challenge – understand-
ing letterforms with the same efficiency and flexibility of hu-
mans – still stands as a grand goal for artificial intelligence. 
People use a lot more commonsense knowledge, in context-
sensitive and dynamic ways, when they identify letterforms 
(Fig. 1C, iii). Our works suggests that incorporating inductive 
biases from systems neuroscience can lead to robust, gener-
alizable machine-learning models that demonstrate high 
data efficiency. We hope that this work inspires improved 
models of cortical circuits (61, 62) and investigations that 
combine the power of neural networks and structured prob-
abilistic models toward general artificial intelligence systems. 
 
Methods summary 
For reCAPTCHA experiments, we downloaded 5500 reCAP-
TCHA images from google.com reCAPTCHA page, of which 
500 were used as validation set for parameter tuning, and ac-
curacy numbers are reported on the remaining 5000. The im-
ages were scaled up by a factor of 2. A similar-looking font to 
those used in reCAPTCHA, Georgia, was identified by visual 
comparison from the fonts available on the local system. RCN 
was trained on a few rotations of the lowercase and upper-
case characters from this font. Hyperparameters were opti-
mized using the validation set. Human accuracy on the 
reCAPTCHA data set was estimated using Amazon Mechani-
cal Turk (AMT) using U.S. based workers. 

Emulated reCAPTCHA data sets, used to train the neural 
network for control experiments, were created using Image-
Magick to produce distortions that are qualitatively similar 
to the original reCAPTCHA. The emulated data generator is 
used as an unlimited source to generate random batches for 
training the neural network. Neural network optimization 
was run for 80 epochs, where data are permuted at the start 
of every epoch; data were also augmented by random trans-
lations of up to 5 pixels in each cardinal direction per epoch. 

Similar methods were used for BotDetect, PayPal and Ya-
hoo CAPTCHAs. For BotDetect, we downloaded a data set of 
50-100 images per CAPTCHA style for determining the pars-
ing parameters and training setup, and another 100 images 
as a testing data set on which the network is not tuned. As 
training images for the system, we selected a series of fonts 
and scales from those available on the system by visually 
comparing a few examples of the BotDetect CAPTCHAs. The 
BotDetect test images were rescaled by a factor of 1.45. Pars-
ing parameters were optimized using the validation set, and 
the transferability of the parsing parameters were tested by 
adapting the parameters for each style separately and then 
testing those parameters on the other styles. 

For training RCN to parse ICDAR, we obtained 492 fonts 

from Google Fonts, which resulted in 25584 character train-
ing images. From this we selected a set of training images 
using an automated greedy font selection approach. We ren-
dered binary images for all fonts and then used the resulting 
images of the same letter to train an RCN. This RCN is then 
used to recognize the exact images it was trained on, provid-
ing a compatibility score (between 0.0 and 1.0) for all pairs of 
fonts of the same letter. Finally, using a threshold (=0.8) as 
the stopping criterion, we greedily select the most representa-
tive fonts until 90% of all fonts are represented, which re-
sulted in 776 unique training images. The parser is trained 
using 630 word images and the character ngrams are trained 
using words from the Wikipedia. 

RCN classification experiments on the MNIST data set are 
done by up-sampling the images by a factor of 4. For each 
training setting, two pooling hyperparameters of the model 
were adapted using an independent validation set of rotated 
MNIST digits. Several ways of pre-training the CNN are ex-
plored as part of the baselines. To understand the perfor-
mance of the networks on noisy MNIST data, we created six 
variants of noise, each one with three levels of severity. For 
occlusion reasoning, the RCN network was trained with 11 
categories: ten MNIST digit categories with 20 examples for 
category and the rectangular ring category with one example. 
Reconstruction experiments on the MNIST data set used net-
works that were trained only on clean MNIST images which 
were then tested for mean squared reconstruction error on 6 
different noise variants, each with 3 levels of severity. Full 
methods are available in supplemental materials. 
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Fig. 1. Flexibility of letterform perception in humans. (A) Humans are good at parsing unfamiliar CAPTCHAs. 
(B) The same character shape can be rendered in a wide variety of appearances, and people can detect the “A” 
in these images regardless. (C) Common sense and context affect letterform perception: (i) m vs u and n. (ii) 
the same line segments are interpreted as N or S depending on occluder positions. (iii) perception of the shapes 
aids the recognition of “b,i,s,o,n” and “b,i,k,e”. [Bison logo with permission from Seamus Leonard, 
http://www.steadynow.com] 
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Fig. 2. Structure of the RCN. (A) A 
hierarchy generates the contours 
of an object, and a Conditional 
Random Field (CRF) generates its 
surface appearance. (B) Two 
subnetworks at the same level of 
the contour hierarchy keep 
separate lateral connections by 
making parent-specific copies of 
child features and connecting them 
with parent-specific laterals; nodes 
within the green rectangle are 
copies of the feature marked “e”. 
(C) A three level RCN representing 
the contours of a square. Features 
at Level 2 represent the four 
corners, and each corner is 
represented as a conjunction of 
four line-segment features. (D) 
Four-level network representing an 
“A”. 
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Fig. 3. Samples from RCN. (A) 
Samples from a corner feature with and 
without lateral connections. (B) 
Samples from character “A” for 
different deformability settings, 
determined by pooling and lateral 
perturb-factors, in a 3-level hierarchy 
similar to Fig. 2D, where the lowest level 
features are edges. Column 2 shows a 
balanced setting where deformability is 
distributed between the levels to 
produce local deformations and global 
translations. The other columns show 
some extreme configurations. (C) 
Contour to surface-CRF interaction for 
a cube. Green factors: foreground-to-
background edges, blue: within-object 
edges. (D) Different surface-
appearance samples for the cubical 
shape in C. [See section 3 of (33) for 
CRF parameters.] 
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Fig. 4. Inference and learning. (A) (i) Forward pass, including lateral 
propagation, produces hypotheses about the multiple letters present in the 
input image. PreProc is a bank of Gabor-like filters that convert from pixels 
to edge likelihoods [section 4.2 of (33)]. (ii) Backward pass and lateral 
propagation creates the segmentation mask for a selected forward-pass 
hypothesis, here the letter “A” [section 4.4 of (33)]. (iii) A false hypothesis 
“V” is hallucinated at the intersection of “A” and “K”; false hypotheses are 
resolved via parsing [section 4.7 of (33)]. (iv) Multiple hypotheses can be 
activated to produce a joint explanation that involves explaining away and 
occlusion reasoning. (B) Learning features at the second feature level. 
Colored circles represent feature activations. The dotted circle is a 
proposed feature [see text and section 5 of (33)]. (C) Learning of laterals 
from contour adjacency (see text). 
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Fig. 5. Parsing CAPTCHAs 
with RCN. (A) Representative 
reCAPTCHA parses showing 
top two solutions, their 
segmentations, and labels by 
two different Amazon 
Mechanical Turk workers. (B) 
Word accuracy rates of RCN 
and CNN on the control 
CAPTCHA data set. CNN is 
brittle and RCN is robust 
when character-spacing is 
changed. (C) Accuracies for 
different CAPTCHA styles. 
(D) Representative 
BotDetect parses and 
segmentations (indicated by 
the different colors). 
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Fig. 6. MNIST classification results for 
training with few examples. (A) MNIST 
classification accuracy for RCN, CNN, 
and CPM. (B) Classification accuracy on 
corrupted MNIST tests. Legends show 
the total number of training examples. 
(C) MNIST classification accuracy for 
different RCN configurations. 
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Fig. 7. Generation, occlusion reasoning, and scene-text parsing with 
RCN. Examples of reconstructions (A) and reconstruction error (B) from 
RCN, VAE and DRAW on corrupted MNIST. Legends show the number of 
training examples. (C) Occlusion reasoning. The third column shows edges 
remaining after RCN explains away the edges of the first detected object. 
Ground-truth masks reflect the occlusion relationships between the square 
and the digit. The portions of the digit that are in front of the square are 
indicated by brown color and the portions that are behind the square are 
indicated by orange color. The last column shows the predicted occlusion 
mask. (D) One-shot generation from Omniglot. In each column, row 1 shows 
the training example and the remaining rows show generated samples. (E) 
Examples of ICDAR images successfully parsed by RCN. The yellow outlines 
show segmentations. 
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Fig. 8. Application of RCN to 
parsing scenes with objects. 
Shown are the detections and 
instance segmentations obtained 
when RCN was applied to a scene 
parsing task with multiple real-
world objects in cluttered scenes 
on random backgrounds. Our 
experiments suggest that RCN 
could be generalized beyond text 
parsing [see section 8.12 of (33) 
and Discussion]. 
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Table 1. Accuracy and number of training images for different methods on the ICDAR-13 robust reading data set. 
 

Method Accuracy Total no. of training images 
PLT (54) 64.6% Unknown 
NSEP (54) 63.7% Unknown 
PicRead (54) 63.1% Unknown 
Deep Structured Output Learning (55) 81.8% 8,000,000 
PhotoOCR (54) 84.3% 7,900,000 
RCN 86.2% 26,214 (reduced to 1406) 
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