

A New Twist In SSDP Attacks

June 2018

A New Twist In SSDP Attacks

2

Executive Summary

 Arbor ASERT has uncovered a new class of SSDP abuse where naïve devices will respond to
SSDP reflection/amplification attacks with a non-standard port. The resulting flood of UDP packets have
ephemeral source and destination ports, making mitigation more difficult - a SSDP diffraction attack. This
behavior appears to stem from broad re-use in CPE devices of the open source library libupnp. Evidence
from prior DDoS events suggest that attackers are aware of this behavior and may choose a pool of these
misbehaving victims based on the efficacy of their attack. Using Arbor products to mitigate these attacks
require inspecting packet content to filter the flood of SSDP replies and non-initial fragments.

Key Findings

• SSDP has been abused for reflection/amplification attacks for many years. In 2015, Arbor
identified attacks utilizing SSDP traffic from ephemeral source ports.

• SSDP diffraction attacks that use ephemeral ports can defeat naïve port filtering mitigations.

• Surprisingly, the majority of the roughly 5 million SSDP servers reachable via the public Internet

will respond from an ephemeral source port.

• The behavior stems from use of the open source library libupnp, which appears to be used in a

variety of CPE devices.

• Defending against SSDP diffraction attacks requires inspecting packet content.

An Oversimplified Introduction To SSDP

 SSDP (Simple Service Discovery Protocol) is a simple protocol designed to solve the problem of
service discovery over a local network. The technology uses text-based HTTP messages over UDP (aka
HTTPU) on the well-known port 1900. A client wishing to query for available services will issue a M-
SEARCH command via HTTPU. Figure 1 shows a client querying the network via multicast for available
services, and a printer replying with details of three services in three response packets.

Figure 1: Normal SSDP Activity

Client
<clientip>:<clientport> -> 239.255.255.250:1900 UDP

M-SEARCH * HTTP/1.1 […]

Hello, what services are out there?

 Printer
 <printerip>:1900 -> <clientip>:<clientport> UDP

HTTP/1.1 200 OK

 I’m a printer, here’s where you can find service #3

 Printer
 <printerip>:1900 -> <clientip>:<clientport> UDP

HTTP/1.1 200 OK

 I’m a printer, here’s where you can find service #2

 Printer
 <printerip>:1900 -> <clientip>:<clientport> UDP

HTTP/1.1 200 OK […]

 I’m a printer, here’s where you can find service #1

https://asert.arbornetworks.com/the-importance-of-being-accurate-ssdp-diffraction-attacks-udp-refraction-attacks-and-upnp-nat-bypass/

 A New Twist In SSDP Attacks

 3

On the wire, the M-SEARCH packet is almost always static, no matter the intent of the client. Refer to the
UPNP specification for details about the meaning of these fields.

M-SEARCH * HTTP/1.1

HOST:239.255.255.250:1900

MAN: "ssdp:discover"

MX: 2

ST: ssdp:all

 The SSDP server will respond with one or more HTTPU responses, one for each unique service
that is available. UDP packets may contain multiple HTTPU responses separated by two carriage-return /
newline characters.

HTTP/1.1 200 OK

CACHE-CONTROL: max-age=120

ST: urn:schemas-upnp-org:device:WANDevice:1

USN: uuid:fc4ec57e-b051-11db-88f8-

0060085db3f6::urn:schemas-upnp-org:device:WANDevice:1

EXT:

SERVER: Net-OS 5.xx UPnP/1.0

LOCATION: http://192.168.0.1:2048/etc/linuxigd/gatedesc.xml

 An important field to understand for later discussion is the USN, or Unique Service Name. It is a
UUID (Universally Unique Identifier) used to uniquely identify a device or service, although in practice
UUIDs are re-used for entire device classes.

 The LOCATION field is essential to the client - it points to a URL (TCP-based HTTP, not HTTPU)
where the client can retrieve an XML-based description of the capabilities of the service. Some services
will specify a SOAP (Simple Object Access Protocol) endpoint that clients can use to interact with the
service, such as sending a job to a printer.

 Other HTTPU verbs exist to manage discovery and graceful timeout of SSDP services but are not
germane to this discussion.

Reflection/Amplification

 The SSDP protocol is rife for Distributed Denial of Service (DDoS) abuse for one simple reason –
many SSDP server implementations will answer requests sent to unicast addresses (e.g. 1.1.1.1), not just
the well-known link-local multicast addresses for SSDP (239.255.255.250). Packets with multicast
addresses as source or destination will not be routed via the Internet, but unicast addresses will. A
roughly 100-byte request packet over UDP can yield as many as a dozen or more UDP responses (one
for each service), all without the hurdle of having to setup a three-way TCP handshake. The resulting
multiplicative effect of the responses will overwhelm the target. SSDP-based reflection/amplification
attacks became fashionable in 2014, despite being well-understood long before then.

 An attacker wishing to abuse SSDP for DDoS would take the following steps:

• Scan some portion of the Internet looking for IP addresses that respond to M-SEARCH queries
with multiple (as many as possible!) packets.

• Using this list of abuse-able addresses, send a flood of M-SEARCH queries with the source
address spoofed to be the intended target.

• Tweak the number of spoofed M-SEARCH packets until the target is overwhelmed.

http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

A New Twist In SSDP Attacks

4

 Mitigating SSDP reflection/amplification attacks is straightforward since the attack packets
originate from source port 1900, with an ephemeral destination port from the original spoofed request and
contain an HTTPU response. Almost all uses of SSDP occur on the local network, and most large
organizations don’t rely on the protocol for mission-critical applications, so packets with a UDP/1900
source port can generally be filtered at network boundaries during a crisis.

Abnormal SSDP Attacks

 Both the attack and defense of SSDP reflection/amplification attacks have been well understood
for years. But, a handful of DDoS attacks ASERT observed in 2015 exhibited different characteristics than
a vanilla SSDP attack. The attack traffic did consist of HTTPU responses solicited from spoofed requests,
but both the source and destination ports were ephemeral. The attack was a flood of UDP packets with
high-numbered ports as the source and destination, rendering traditional source port filtering ineffective.

 What was interesting about the attacks are that they started as a flood of UDP/1900 source port
HTTPU packets (a normal attack), but when port filtering was put in place, the attack shifted to HTTPU
packets with ephemeral sources (a diffraction attack). Clearly either the attacker, or the author of the
attack tool, was aware of the difference in efficacy of both the normal attack and the diffraction attack.

What’s happening here? Let’s dig in.

Scanning

 To understand how the SSDP population behaves, in September 2017 ASERT scanned the
entire Internet. Every public address on the Internet was sent a generic M-SEARCH packet, and the first
response packets recorded. The M-SEARCH packet used a static UDP source port of 1901 as a proxy for
an ephemeral port, so both behaving and misbehaving (see below) responses could be recorded. The
average “hit-rate” where a query was answered was 0.14%, or just over 5 million responses. This
comprehensive scan yielded more responses than our later scan, which had a more aggressive timeout.

Analysis

 For the purposes of this discussion, we’ll divide the population of responses into two categories.
The behaving group is the set of addresses that, when sent an M-SEARCH query to UDP port 1900,
responded with one or more UDP packets with a source port of 1900. Conversely, the misbehaving
group is the set of addresses that when sent an M-SEARCH query to UDP port 1900 responded with one
or more UDP packets with a source port other than 1900.

 The first thing that immediately stands out, is that the population of misbehaving sources
actually outnumbers those of behaving!

Figure 2: Misbehaving / Behaving Population

 What can we learn about what makes the misbehaving group different than the behaving? The
behaving group will all have source ports of 1900, but we can examine a histogram of the source ports
from the misbehaving group.

https://asert.arbornetworks.com/the-importance-of-being-accurate-ssdp-diffraction-attacks-udp-refraction-attacks-and-upnp-nat-bypass/
https://asert.arbornetworks.com/the-importance-of-being-accurate-ssdp-diffraction-attacks-udp-refraction-attacks-and-upnp-nat-bypass/

 A New Twist In SSDP Attacks

 5

Figure 3: Histogram of Misbehaving Source Ports

 Different operating systems choose ephemeral source ports from different ranges. Windows
usually chooses lower port numbers (1,025-5,000), and we observe a handful that fit that description.
Linux usually chooses from a larger pool (32,768-61,000), and there are many more here than the
Windows group.

The following table provides geo-location information for both the behaving and misbehaving populations:

Behaving Misbehaving
Country Count Country Count
China 628,121 China 585,104
Argentina 288,151 Russia 298,161

Russia 202,404 Vietnam 217,969

South Korea 139,623 South Korea 216,061

Taiwan 96,162 Venezuela 213,711

USA 89,452 Turkey 117,891

Italy 60,408 Algeria 108,088

India 56,592 Ukraine 101,320

Brazil 54,603 Japan 92,460

Tunisia 51,178 Greece 89,071

Figure 4: Top Ten Behaving/Misbehaving Countries

 USN is a UUID that supposedly uniquely defines each specific device, although in practice entire
device classes re-use this field. Unfortunately, there is no canonical registry mapping USNs to devices,
but a naïve count does offer some clues.

A New Twist In SSDP Attacks

6

USN Count
<none in initial response packet> 466,247
uuid:IGD{8c80f73f-4ba0-45fa-835d-042505d052be}000000000000 410,071
uuid:fc4ec57e-b051-11db-88f8-0060085db3f6::upnp:rootdevice 147,621
uuid:00000000-0000-0000-0000-000000000000::upnp:rootdevice 50,410
uuid:IGD{8c80f73f-4ba0-45fa-835d-

042505d052be}000000000000::urn:schemas-upnp-

org:device:InternetGatewayDevice:1

29,400

Figure 5: Top Five Behaving USNs

 The majority of behaving USNs are either 8c80f73f-4ba0-45fa-835d-042505d052be (an

Internet Gateway Device - mostly likely a CPE router), fc4ec57e-b051-11db-88f8-0060085db3f6

(used by the MiniUPNP open source project), not specified, or zeroed out.

USN Count
uuid:75802409-bccb-40e7-8e6c-fa095ecce13e::upnp:rootdevice 441,256
uuid:160a0200-ac91-4b05-8adf-f5ccc5a5ebaa::upnp:rootdevice 85,320
uuid:uuid:160a0200-ac91-4b05-8adf-

f5ccc5a5ebaa::upnp:rootdevice

42,828

uuid:75802409-bccb-40e7-8e6c-fa095ecce13e::urn:schemas-dummy-

com:service:Dummy:1
34,564

uuid:75802409-bccb-40e7-8e6c-fa095ecce13e 27,556

Figure 6: Top Five Misbehaving USNs

 Of the misbehaving population, the 75802409-bccb-40e7-8e6c-fa095ecce13e USN and

its variants are by far the most popular. More on that in the next section.

 Other optional fields can be used in an HTTPU response, including a Server header. Much like

the HTTP counterpart, the Server header identifies the type of server responding to the request.

Behaving Misbehaving
Server Count Server Count
System/1.0 UPnP/1.0 IGD/1.0

528,137 Linux, UPnP/1.0, Portable SDK for

UPnP devices/1.6.6
521,424

Custom/1.0 UPnP/1.0

Proc/Ver
347,866 Linux/2.6.36, UPnP/1.0, Portable

SDK for UPnP devices/1.6.6
277,539

Linux UPnP/1.0 Huawei-ATP-

IGD
221,436 Linux/2.6.30.9, UPnP/1.0,

Portable SDK for UPnP

devices/1.6.6

225,443

TBS/R2 UPnP/1.0

MiniUPnPd/1.2
205,715 Unspecified, UPnP/1.0,

Unspecified
187,252

Linux/2.4.22-1.2115.nptl

UPnP/1.0 miniupnpd/1.0
181,986 Linux/2.6.32.11, UPnP/1.0,

Portable SDK for UPnP

devices/1.6.19

172,237

Net-OS 5.xx UPnP/1.0 156,938 Linux/2.6.21, UPnP/1.0, Portable

SDK for UPnP devices/1.3.1
157,027

miniupnpd/1.0 UPnP/1.0 150,886 Linux/3.0.8, UPnP/1.0, Portable

SDK for UPnP devices/1.6.18
153,981

<none in initial response

packet>
70,039 Linux/3.10.0, UPnP/1.0, Portable

SDK for UPnP devices/1.6.18
96,682

 A New Twist In SSDP Attacks

 7

LINUX-2.6 UPnP/1.0

MiniUPnPd/1.5
50,087 Linux/2.6.21.5, UPnP/1.0,

Portable SDK for UPnP

devices/1.6.6

89,375

uClinux/2.6.28.10 UPnP/1.0

MiniUPnPd/1.3

29,728 Linux/2.6.30, UPnP/1.0, Portable

SDK for UPnP devices/1.6.6
82,087

Figure 7: Top Ten Server Responses

 The behaving Server responses are all over the map, but there is a clear pattern to the

misbehaving side – Linux/[kernel version], UPnP/1.0 Portable SDK For UPnP

devices/[library version]. Several different kernel and library versions are represented. The

library is a major clue as to the identity of the misbehaving population.

 The final HTTPU response field we’ll examine is the X-User-Agent. Oddly enough, some

responses will contain a X-User-Agent similar to a normal HTTP header’s User-Agent field.

Behaving Misbehaving
X-User-Agent Count X-User-Agent Count
<none in initial response

packet>
2,158,308 redsonic 2,292,770

redsonic 8,009 None 544,430

UPnP/1.0 DLNADOC/1.50 2 NRDP MDX 184,99

VisiMAX {8.03.00.00} 1 ZyXEL 6,822

 TrendChip-1.0 DMS 987

Figure 8: Top Five X-User-Agents

 The obvious pattern here is that the misbehaving set overwhelmingly contains redsonic. While

the behaving set has a small handful of the same, the vast majority don’t include it.

Linux UPNP

 The UUID that appears in misbehaving sources, but is almost completely absent from normal
sources is 75802409-bccb-40e7-8e6c-fa095ecce13e. When searching for information about these

long opaque UUIDs, you’ll normally only find information about DDoS attacks. But this UUID clearly
belongs to the Linux UPNP Internet Gateway Device. From the source code linuxigd-

1.0/etc/gatedesc.xml:

http://linux-igd.sourceforge.net/

A New Twist In SSDP Attacks

8

 The Linux UPNP Internet Gateway Device is an implementation of Microsoft's Internet
Connection Service (ICS), a SSDP-aware protocol that solves the double-NAT problem. When two
Internet users behind NAT devices wish to directly connect, for example to share a file without going
through a third party, they can negotiate temporarily opening ports on both sides with the ICS protocol.

 The Linux UPNP Internet Gateway Device only implements the ICS protocol, it relies on the
Portable SDK for UPnP Devices (libupnp) for handling the lower-level UPNP. We installed the entire suite
in our test lab to try and elicit the abnormal behavior. Here is a packet capture from our first normal M-
SEARCH command:

 It exhibits the ephemeral port behavior by default! This dump was captured on the device running
the Linux UPNP Internet Gateway, so no external network tampering like NAT is in effect.

Digging Into The Source

 The libupnp project that actually implements the SSDP protocol is clearly of interest, so let’s go
even deeper and examine the source code, beginning with the latest version as of this writing 1.6.22
(released May 2017). Beginning with libupnp-1.6.22/upnp/src/ssdp/ssdp_server.c. The

function readFromSSDPSocket() handles requests sent to UDP/1900:

http://pupnp.sourceforge.net/

 A New Twist In SSDP Attacks

 9

 It does some basic validation of the M-SEARCH request, eventually spawning another thread to
handle the response ending up in the function NewRequestHandler() in libupnp-

1.6.22/upnp/src/ssdp/ssdp_device.c:

 The parameter DestAddr contains the presumably spoofed source address and the ephemeral

port which sent the request. This crucial issue here is that the response creates a new socket, resulting in
a new ephemeral source port that is not 1900:

 The code continues to incorrectly assume it will respond to a unicast M-SEARCH request by
setting the socket to multicast and TTL (time-to-live) to 4, without any error checking.

It finally packages up all the responses and sends them to the destination:

 So why did the potentially mitigating TTL value of 4 fail to protect us? For that answer, we have to
dive into the Linux kernel.

The call to setsockopt() did succeed, but the Linux kernel regards that only as a suggestion.

In linux/net/ipv4/ip_output.c (link), the function __ip_make_skb() is responsible for delivering

IP datagrams.

https://github.com/torvalds/linux/blob/ae50dfd61665086e617cc9e554a1285d52765670/net/ipv4/ip_output.c

A New Twist In SSDP Attacks

10

 First it will check cork, which ensures that IP fragments use the same TTL, and is not applicable

here. Next the value inet->mc_ttl is taken from our earlier call to setsockopt(), but notice that it

will only use this if the routing table entry for this particular destination is RTN_MULTICAST (aka, a

multicast address). The response to the M-SEARCH request is being sent to a unicast address, so this
check fails and falls through to use the default TTL!

 The Server: Linux/[kernel version], UPnP/1.0 Portable SDK For UPnP

devices/[library version] HTTPU header was found almost entirely in the misbehaving set.

Sure enough, libupnp sets this by default, and even accounts for the Unspecified, UPnP/1.0,

Unspecified header as the fourth largest in the misbehaving set seen in figure 7:

 Finally, remember the X-User-Agent: redsonic HTTPU header enormously prevalent in the

misbehaving set? It also comes from libupnp. In libupnp-1.6.22/upnp/src/ inc/ssdplib.h:

 A New Twist In SSDP Attacks

 11

 libupnp includes this X-User-Agent by default, although it can be changed at compile-time by
users of the library.

 We believe devices that use libupnp are responsible for the aberrant DDoS behavior we have
observed for the following reasons:

• The UUID 75802409-bccb-40e7-8e6c-fa095ecce13e over represented in the

misbehaving set is the Linux UPNP Internet Gateway Device, which uses libupnp.

• libupnp creates a new socket for responses, resulting in a new ephemeral port.

• The unique Server HTTPU header, hugely skewed towards the misbehaving set is the default

value in libupnp.

• The X-User-Agent: redsonic HTTPU header, also vastly over represented in the

misbehaving set is used by default in libupnp.

Mitigation

 There is a strong argument for making SSDP servers only respond to multicast requests, but this
is not how it works today. Making such a major change could subtly break misbehaving clients that
depend on the behavior. Possibly the easiest fix, for behaving and misbehaving SSDP servers is to
correctly set a small TTL on all reply packets. Reflection/amplification traffic would still make it out a few
hops, but would not be effective enough to use in a real-world DDoS attack.

Conclusion

 Attacks will always incrementally evolve just enough evade defenses. In this case we identified
an effective new twist on an old, well-understood attack type. This revelation reminds us that defenders
must constantly be aware of evolving attack methods and be as adaptable as the attackers. This specific
attack highlights two trends we see time again: old code containing bugs being re-used in new consumer
products, and subsequent exposure of those vulnerable populations.

