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FOREWORD
This is year 12 of the WhiteHat Security Application Security Statistics Report, and for the first time 
in its history (and maybe all history) we are providing some real metrics around DevSecOps. Does 
taking this approach really make a difference when it comes to improving application security? 
We’ve also added a new SAST section, and – thanks to our partner NowSecure – a mobile application 
security section.

The idea of DevSecOps has captured the imaginations of many of us working in security. Making 
security part of a developer’s processes and workflow makes sense to a security practitioner, 
but it represents a greater challenge to a developer who doesn’t have a background in security. 
Compounding the problem is the fact that developers are being asked to release apps faster and faster 
all the time. Like it or not, it’s becoming imperative that security “move left in the SDLC” to become as 
much a part of the developer’s coding process as any other aspect of software development. This is 
because applications have become the driving force of the digital business yet they remain the most 
vulnerable component. The Verizon 2017 Data Breach Investigations Report found that “almost 60% of 
breaches involved web applications either as the asset affected, and/or a vector to the affected asset.”

The great news for developers is that we’ve uncovered some compelling evidence that the security 
effort is worth it. In the section of this report titled “Case Study: Making the Case for DevSecOps”, 
we’ve profiled a WhiteHat customer that implemented a program for creating “Security Heroes” in the 
development organization, putting the training and infrastructure in place necessary to support secure 
coding in an agile DevOps environment. The results of this effort were impressive: critical vulnerabilities 
in applications in development and in production were resolved in a fraction of the time that it takes 
organizations that haven’t engaged DevOps teams in the security effort.

What you’ll find as you read this report is that there are still too many vulnerabilities in applications 
and it’s still taking too long to fix them. But the DevSecOps phenomenon offers light at the end of 
the tunnel, and we’re starting to see real evidence of the value of security and development working 
together to protect the applications that we rely on every day in our personal and professional lives.

Ryan O'Leary
Ryan O'Leary

Vice President, 
WhiteHat Security Threat Research Center 
and Technical Support
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WHY READ THIS REPORT
Software sits in the center of digital business
For many organizations today, applications ARE the business. New code is developed and released 
faster than ever before using agile, rapidly iterative methods. New applications launch every day.

Yet the practice of application security is a constantly moving target.
Every day it seems, new hacks and attacks are discovered that exploit weaknesses in the software that 
runs your business. According to the 2017 Verizon Data Breach Investigations Report, 30 percent of 
data breaches target the application layer. Even as digital transformation requires that software be built 
faster, application security is required to reduce your organization’s overall business risk.

This is the largest and most accurate report of its kind available focused 
on application security.
It imparts the latest real-world security intelligence, providing one-of-a-kind breadth and depth 
across dynamic, static and mobile security testing – including a case study proving the benefits of a 
DevSecOps approach.

For executives, security practitioners and development teams who want to better 
understand the present state of software security risk, and who seek to benchmark and 
improve their own organization’s performance, this report is essential reading.

for business decision makers...

How to measure the effectiveness of your application security investments in helping to mitigate 
overall business risk.

for security professionals...

How to best defend your applications by evaluating how your vulnerability levels and remediation 
times compared with industry benchmarks.

for application development teams...

How to develop software more securely by partnering with the security team in adopting tools and 
methodologies compliant with your software development lifecycle (SDLC).
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INTRODUCTION
The Application Security Statistics Report is an annual study.
For the past 11 years, this report has provided perspective on the present application security posture 
of hundreds of organizations. It has simply become the largest and most accurate report of its kind 
available focused on application security. Unlike a survey, the data highlighted in this report comes 
directly from actual code-level analysis of billions of lines of code and tens of thousands of websites 
and applications.

The objective is to provide timely insights into how any organization 
can measurably improve its application security program. 
Insecure software applications have become a critical part of assessing total business risk. All 
organizations must actively manage the security posture of their business software portfolio and 
greater software supply chain. Information security teams must work to mitigate the risks from 
vulnerable applications – for the benefit of business users, consumers, or both. Everyone involved in 
securing the software that runs the organization should keep this true equation in mind:

2017 findings include analysis of multiple software testing methods – 
dynamic (DAST), static (SAST), and mobile app security.
This volume captures data collected in the twelve months of 2016 analyzing 15,000 web applications, 
billions of lines of code, and more than 65,600 mobile apps. Its findings comprise analysis of DAST 
results, and new this year: SAST results, DAST/SAST applied in combination, and mobile app security 
data provided by WhiteHat partner NowSecure. Software vulnerabilities are examined by criteria such 
as type, class, time to remediate, industry, severity and other criteria. This analysis therefore reports the 
latest real-world security intelligence, providing one-of-a-kind breadth and depth.

It is hoped that the findings from this important study can help any organization to identify and scale its 
application security approach with insight into issues that all organizations must address. As the only 
industry leading, pure-play application security platform provider, WhiteHat Security continues to work 
tirelessly to improve the security posture of our customer organizations, and by extension the entire 
software industry. We welcome any questions or comments from readers as we continually strive to 
improve and enrich the coverage, quality and detail of this report.

Average number of serious 
vulnerabilities per web application

Number of business-critical 
web applications

Real Attack 
Surface

https://www.nowsecure.com/
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EXECUTIVE SUMMARY

The size of the application security 
problem continues to grow.
Software sits at the center of digital business. For many organizations, their 
applications simply ARE the business. Websites and applications drive great 
digital experiences, but only secure applications can deliver them safely. In 
industry after industry, organizations rely on hundreds if not thousands of 
applications – scaling the job of application security exponentially.

The latest edition of the Verizon Data Breach Investigations Report 
highlights the statistics in the side bar that are important to understand in 
light of the state of application security.

The pace of digital transformation has been breathtaking, creating non-stop 
demand for rapid business innovation. This means software applications are 
being developed and released faster than ever before using agile, rapidly 
iterative methods. No longer written from scratch, today’s mobile app or 
embedded device software is instead “assembled” from interconnected 
APIs, open source components, and cloud delivery methods such as 
containers and micro-services.

Meanwhile, new hacks and attacks are launched every day that exploit 
hidden weaknesses in new software. This means new vulnerabilities are 
being exposed and exploited faster, at a pace that many organizations 
simply cannot match. The practice of application security is therefore 
required to reduce overall business risk. Yet many organizations lack the 
tools, talent and expertise required to succeed.

According to Gartner, enterprises spent $719M 
on software security in 2016, up from $630M in 
2015.¹ That’s good news; however relative to other 
cybersecurity methods, application security still isn’t 
enjoying nearly enough investment.

of total breaches 
reported...

of attacks on web 
applications...

involved attacks on 
web applications

hacking related breaches 
that leveraged weak or 
stolen passwords

30%

featured hacking to 
exploit vulnerabilities

62%

81%

financially motivated, 
perpetrated by organized 
criminal groups

exploited SQL 
Injection errors

93%

carried out by botnets, 
not individuals

77%

32%
source: verizon 2017¹¹ Gartner, Inc., “Forecast: Information Security, Worldwide, 2015-2021, 1Q17 Update”, Ruggero Contu, Christian Canales, Sid 

Deshpande and Lawrence Pingree, 18 May 2017
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The 5 Major Findings on Application 
Security Statistics in 2017

the application security posture of the average 
organization has improved, but only marginally.

In 2015, the average web application had four vulnerabilities; in 2016 that number 
dropped to three. That’s an improvement of 25 percent, and overall a sign that many 
organizations are starting to mature their application security programs. One factor that 
could explain this marginal improvement is greater integration of testing tools with the 
software development lifecycle (SDLC). Yet progress remains too slow. The multiple of 
total vulnerabilities in any single organization’s software portfolio remains staggering. 
Average time-to-fix is still too high, and remediation rates too low. Overall, further 
process improvement is needed.

use of both sast and dast testing in tandem is essential 
for application security program effectiveness.

Certain code vulnerabilities take a shorter amount of time to fix and are easier to 
remediate during development, when static testing (SAST) is best employed. Other 
errors show up only in dynamic testing (DAST) of applications once in production. 
However certain vulnerabilities such as SQL injection and Cross-Site Scripting are likely 
to be found by both testing regimens – these are the errors most critical to address. 
Every vulnerability fixed during development will improve the security posture of the 
production application. That said, SAST errors are still taking an average of 113 days to 
remediate, which is not nearly fast enough.

organizations must take a risk-based approach to 
remediating application security flaws.

Remediation priorities need to be set based on the criticality of the software errors 
found. Vulnerability ratings depend on many factors, and an error that is considered 
critical by one organization may be considered medium-risk by another. Software 
developers need more education by security teams to understand the risk levels of 
different vulnerability types. Remediation is too often being prioritized by path of least 
resistance (i.e. the easiest ones are the first to be fixed). Most organizations still need to 
adopt risk-based remediation processes.

finding.1

finding.2

finding.3
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application security testing methods are more 
effective when integrated with the sdlc.

All organizations must implement application security procedures earlier in their SDLC. 
It has been proven faster and less costly to catch and fix flaws earlier rather than later. 
Routine security testing in development makes resulting production applications 
stronger. Organizations that integrate multiple kinds of testing regimens (e.g. DAST, 
SAST, mobile, etc.) directly with their SDLC see the best results. Today’s application 
security platforms extend visibility and control even further with Software Composition 
Analysis, API testing, training and other services.

adoption of devsecops is imperative for application 
security to deliver competitive advantage.

Organizations adopting DevOps practices must extend them to application security 
practices as well. The time is now. Many enterprises are starting to make DevSecOps 
real. Real-word examples exist of working DevSecOps programs that prove its 
advantages (see Case Study, pg. 42). Positive collaboration, not punitive, between 
the security team and application developers is the best approach to achieve an 
application security Center of Excellence.

finding.4

finding.5

https://www.whitehatsec.com/products/solutions/devsecops/


DYNAMIC APPLICATION 
SECURITY TESTING	 �dast
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VULNERABILITIES 
BY INDUSTRY

Despite growing security awareness, applications 
continue to remain vulnerable across all industries.
Application vulnerabilities continue to be a significant problem; however there has been marginal 
improvement across the board. In 2015, web applications analyzed had an average of four 
vulnerabilities. That number dropped to three vulnerabilities in 2016. While this represents a 25 percent 
improvement year-over-year, most applications have three or more vulnerabilities, with almost half 
of them being “critical”. These errors could result in data loss, theft or denial of service attacks if not 
properly remediated.

As Figure 1 indicates, the service industry suffers the highest number of vulnerabilities, both critical and 
non-critical, followed by the transportation sector. Among regulated industries, Retail has one of the 
highest serious vulnerability ratios at 33 percent. By comparison, Finance and Healthcare each have 
less than 28 percent “serious” vulnerabilities (the combination of “critical” and “high risk” classifications). 
These better numbers may reflect an increased level of investment in cybersecurity by those two 
industries. On the other hand, even with PCI compliance imposing a regulatory mandate for better 
application security, the Retail industry continues to be plagued with insecure software.

figure 1.  vulnerability profile by industry - DAST
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WINDOW OF EXPOSURE

Close to 50 percent of applications remain 
vulnerable on every single day of the year.

Window of exposure is defined as the number of days an application has one or 
more serious vulnerabilities open during a given time period. Window of exposure is 
categorized as:

always vulnerable
An application falls in this category if it is vulnerable on every single day of the year.

frequently vulnerable
An application is called frequently vulnerable if it is vulnerable for 271-364 days a year.

regularly vulnerable
A regularly vulnerable application is vulnerable for 151-270 days a year.

occasionally vulnerable
An occasionally vulnerable application is vulnerable for 31-150 days a year.

rarely vulnerable
A rarely vulnerable application is vulnerable for less than 30 days a year.

Figure 2 shows that in five key industries – Utilities, Education, Accommodations, Retail and 
Manufacturing – around 60 percent of their web applications remain “always vulnerable”. In all but one 
industry, at least one-third of web applications are always vulnerable. This implies that organizations are 
not able to resolve all of the “serious” vulnerabilities found in their applications, and it takes them a long 
time to remediate serious vulnerabilities.
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figure 2.  window of exposure - dast
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RARELY VULNERABLE
< 30 DAYS A YEAR

ACCOMODATION
& FOOD SERVICES

HEALTHCARE
& SOCIAL

ASSISTANCE

ARTS,
ENTERTAINMENT
& RECREATION

EDUCATIONAL
SERVICES

FINANCE &
INSURANCE

INFORMATION

PROFESSIONAL,
SCIENTIFIC, &
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VULNERABILITY 
LIKELIHOOD BY CLASS

The top 4 most likely DAST vulnerabilities 
and how to fix them
Vulnerabilities fall into different categories, or “classes”, that have unique attributes. In Figure 3, the 
percent likelihood shown reflects how likely it is that a production application will have a specific class 
of vulnerability. This is calculated based on the number of applications that have at least one open 
vulnerability in a given class, compared to the total number of production applications tested. There is 
wide variation in likelihood of various types of vulnerability classes.

The top four most likely DAST vulnerabilities are:

Information Leakage is the most prevalent vulnerability with 37 percent likelihood. This problem 
is very common, with one out of every two applications having some type of information 
leakage vulnerability. It is a broad classification that can be as serious as leaking usernames and 
passwords or as benign as “leaking” software version numbers. The good news is that it’s usually 
an easy reconfiguration fix, but remediation often depends on the kind of data that is leaking – 
sensitive leaks are addressed, others are not.

Cross-Site Scripting (33%) is an injection attack that targets the client-side of an application to 
execute some malicious script via the end user’s browser. Because production applications are 
not static, they take input and data from users all the time. However, this user input/data must 
be properly encoded and sanitized, not merely executed, depending on the specific case. As 
browsers will interpret and execute script code differently, developers must know how and when 
to apply the proper sanitization solution.

Content Spoofing (27%) is an injection attack that allows an attacker to control the content 
displayed to the end user. It could deface the web page, mimic the authentication screen to steal 
user passwords, or display an error message to compel some other action. Developers must 
always have their guard up when taking text from an input request to ensure data is properly 
displayed as data, not content.

Insufficient Transport Layer Protection (21%) is a class used to describe errors such as weak 
ciphers, certificate misconfiguration or known vulnerable protocols. In recent years it has been 
exploited in zero day attacks such as Poodle, Shellshock and HeartBleed – making it a critical 
but tricky error to fix. Developers must properly maintain protocols, ciphers and certificates in live 
applications to keep them safe and up to date – while balancing security and usability.

To learn more about any of these vulnerabilities, see Appendix B.
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figure 3.  vulnerability likelihood by class - dast
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MOST SERIOUS VULNERABILITIES 
BY CLASS

SQL Injection and Cross-Site Scripting remain the 
most critical vulnerabilities.
Vulnerabilities are rated on five levels of risk – Critical, High, Medium, Low and Note. Critical and 
high-risk vulnerabilities taken together are referred to as “serious” vulnerabilities. Vulnerability ratings 
depend on many factors, and an error that is considered critical by one organization may be considered 
medium-risk by another.

However, there are four classes of vulnerabilities found to be critical in the most cases across the 
thousands of production applications analyzed.

SQL Injection (SQLi) is the most critical by far, at fully 94 percent of vulnerabilities. Both static 
and dynamic security testing detect it equally well. SQLi exploits the database layer through 
rogue code injection techniques. Unauthorized access to backend databases can occur because 
user-supplied input is entered as part of a SQL command or SQL query without proper validation 
or encoding controls. These commands are then sent to the database server where they are 
executed. SQLi allows an unauthorized third-party to create, read, update, alter or delete sensitive 
data accessed via the unprotected application. SQLi attacks are easily preventable, highlighting 
the importance of remediating these quickly.

Cross-Site Scripting (XSS) is an equally likely and critical vulnerability, with 38 percent criticality 
in DAST. XSS is important to remediate because the user is the victim in these attacks, not the 
application. This kind of attack can execute every time the page is loaded into a browser, or 
whenever an associated action is performed by the user. Potential outcomes include hijacking 
the session, stealing account credentials, displaying unwanted advertising, or virus/malware 
infections. A successful XSS attack results in an attacker controlling the victim’s browser or online 
account in the vulnerable application – with or without their knowledge.

Cross-Site Request Forgery (XSRF) is a critical error in 25 percent of production applications. An 
attacker manipulates a victim's browser into sending a HTTP request to take some action on the 
behalf of the user – usually a known, repeatable request. The user’s session cookie helps with 
both tracking and authorization, so it is hijacked to make the attacker’s request appear legitimate.

Insufficient Authorization is not as prevalent as other serious vulnerabilities, but critical 
40 percent of the time it is present. This error occurs when an application fails to prevent 
unauthorized disclosure of data, or when a user is allowed to perform functions in a manner 
inconsistent with the permission policy.

Information Leakage is never critical, but is the most likely. Compare Figure 4 to Figure 3. This 
vulnerability is why data breaches happen! Organizations should understand which data is leaking 
out of their applications, and plug the holes that matter.
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figure 4.  most serious vulnerabilities by class - dast
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REMEDIATION RATES BY 
RISK LEVEL

Easy fixes are being prioritized over more serious flaws.
Remediation rates are along the lines expected – where critical vulnerabilities enjoy the highest 
remediation rate, followed by high-risk ones.

What is interesting is that remediation rates for low-risk and medium-risk vulnerabilities are transposed. 
Why do less serious errors get fixed first? The answer isn’t that surprising…

Development teams are prioritizing critical software problems first, but then move on to easier fixes. 
This is human nature. After patching tricky vulnerabilities, why not knock out a few simple ones? 
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figure 5.  remediation rates by risk level - dast
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REMEDIATION RATES BY 
VULNERABILITY CLASS

Cross-Site Scripting is not being addressed, despite 
being an equally likely and critical vulnerability.

Major classes of application vulnerabilities enjoy varying rates of remediation. This becomes clear 
when the data is sorted by number, or prevalence of each class as in Figure 6.

SQL Injection enjoys the highest remediation rate at 60 percent. SQLi is a critical error, so this 
finding is good to see. Fix rates have been rising in recent years, up 8 percent from 2015.

HTTP Response Splitting is a close second. This error allows an attacker to manipulate the 
response received by a web browser. The attacker can send a single HTTP request that forces 
the web server to form an output stream which is then interpreted by the target as two HTTP 
responses instead of one, as is the normal case.

URL Redirector Abuse is very similar to Content Spoofing, and both are serious vulnerabilities 
greater than 95 percent of the time. Victims are tricked into navigating to an attacker’s site other 
than their true destination.

Sadly, all other vulnerabilities are remediated less than half of the time.

Perhaps the most distressing finding is the fact that Cross-Site Scripting suffers a very 
low remediation rate. This error is always serious, critical 40 percent of the time, yet 
it is completely off this chart. In past years of this study, XSS enjoyed a remediation 
rate between 50-55 percent, so developers simply chose not to deal with it in 2016 – a 
dangerous oversight. Fixing XSS involves locking down the process of passing necessary 
data between the application and the user’s browser. Three remediation options include 
validating/sanitizing data input from the user’s browser, encoding all output to the user’s 
browser, or giving users the option to disable client-side scripts entirely.
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figure 6.  remediation rates by vulnerability class - dast
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TIME TO FIX BY RISK 
LEVEL

Organizations are not using risk levels to prioritize 
vulnerability remediation.

Critical vulnerabilities were fixed quickest in 2016, within an average of 129 days. 
This reflects an improvement, down from 146 days in 2015. SQLi errors have been the 
beneficiary of this trend.

However, high risk vulnerabilities suffer the highest time-to-fix (TTF) – a shocking 196 days on average. 
Ideally these vulnerabilities should be fixed the fastest after the critical errors, and yet high risk TTF is 
instead getting worse. The number of days rose from 171 on average in 2015. The fact that these serious 
software errors are fixed very late reflects the need for better awareness and sharper prioritization.

In the two-year period 2015 to 2016, the average TTF for high and medium-risk vulnerabilities 
increased, while TTF for low risk vulnerabilities remained steady.

Compare Figure 7 to Figure 5, where easy fixes are being remediated quickly and often. This leads to 
the conclusion that security organizations are not using risk levels to set remediation priorities, with the 
exception of “must fix” problems.
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figure 7.  average time to fix by risk level in days - dast
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VULNERABILITY 
LIKELIHOOD BY CLASS

Use of open source and re-usable components in 
software development introduces and propagates 
new vulnerabilities.

The most common code vulnerability evident in static security testing during the software development 
process is Unpatched Libraries. Why? Because modern software is largely assembled of component 
parts, and everybody uses open source libraries today. These are readily available options, but often 
not very secure.

The same applies to the second most prevalent error: Application Misconfiguration. Many software 
components such as embeddable debug and QA features worry little about security. Developers will 
enable them by default, creating configuration weaknesses that attackers can exploit. These features 
may provide a means to bypass authentication methods and gain access to sensitive information, 
perhaps with elevated privileges.

It is clear that Software Composition Analysis (SCA) is also required. SCA looks deeply at the source 
code of proprietary, open source and commercial code to identify and inventory all vulnerabilities 
present.

Comparing Figure 8 to Figure 3, note that most vulnerability classes that rank prominently in SAST 
scans of applications in development do not appear in DAST scans of production applications. 

The notable exception is Cross-Site Scripting, the third most likely error to be uncovered in 
development. This illuminates the fact that development teams are not being vigilant enough, allowing 
XSS to make its way into live applications far too often. Perhaps even more distressing: they are 
not remediating XSS in production either (Figure 6). XSS is making its case as the most dangerous 
vulnerability out there.
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figure 8.  vulnerability likelihood by class - sast
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MOST SERIOUS VULNERABILITIES 
BY CLASS

Critical software errors such as SQL Injection must 
be fixed during development to reduce exposure in 
production.

Vulnerabilities are rated on five levels of risk – Critical, High, Medium, Low and Note. Critical and high 
risk vulnerabilities taken together are referred to as “serious” vulnerabilities.

As shown in Figure 9, there are three classes of vulnerabilities found to be critical across thousands of 
applications analyzed in development.

Insufficient Transport Layer Protection (ITLP) is the most critical, at 94 percent of vulnerabilities. 
This is a class used to describe errors such as weak ciphers, certificate misconfiguration or known 
vulnerable protocols. While ITLP is highly likely to be found by DAST scans (Figure 3), it is rarely a 
critical error (Figure 4) because many organizations are mitigating it via a Web Application Firewall. 
A better fix is for developers to properly configure protocols, ciphers and certificates to make them 
safe. This should be a “must do” during the development process so this error does not make it 
into live applications.

SQL Injection (SQLi) also suffers a very high serious-to-critical ratio, at 81 percent. Both SAST and 
DAST detect SQLi criticality equally well, but unlike ITLP it cannot be fought with a firewall. While 
SQLi attacks are not easily mitigated, they are easily preventable, highlighting the importance of 
remediating these errors in development.

Unpatched Libraries are not only the most likely vulnerability found by SAST, but also critical 
one-third of the time. Open source components such as libraries must be fixed in development. 
The best method is to include Software Composition Analysis (SCA) testing which examines the 
security of all source code, including components.

Certain vulnerabilities can be mitigated in production, while others like SQLi must always be 
remediated in development. A variety of software security testing regimens routinely performed across 
the SDLC is the best Application Security approach. Platform solutions provide this level of visibility 
and control, leaving organizations with enough intelligence to understand how best to fix any software 
error… for the least cost.
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figure 9.  most serious vulnerabilities by class - sast
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REMEDIATION RATES BY 
RISK LEVEL

Less than half of critical vulnerabilities are fixed in 
development, yielding high risk in production.

The easiest and cheapest place to fix any software errors, including security vulnerabilities, 
has long been understood as during development. Yet an examination of remediation 
rates observed in static versus dynamic testing reveals some dramatic differences. Less 
than half of any kind of vulnerability – critical or not – are ever fixed before release. The 
majority of serious errors found in live software are eventually remediated, but why 
are organizations taking this unnecessary risk? More education is needed by security 
professionals to help development teams understand risk levels and how to use them to 
prioritize remediation in development and production applications alike.
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figure 10.  remediation rates by risk level - dast vs. sast
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REMEDIATION RATES BY 
VULNERABILITY CLASS

Developers are prioritizing easy fixes over the 
tougher, more serious vulnerabilities.

It’s human nature to take the path of least resistance. It’s natural to pick the lowest 
hanging fruit. Among the top application vulnerabilities revealed by SAST scans, it 
seems the easiest fixes are the ones getting all the attention (Figure 11). Those enjoying 
the highest remediation rates by developers – Application Misconfiguration (a rate of 
74%), Insecure Digest (66%), and Unpatched Library (62%) – are all easy fixes. While the 
toughest, most complex to resolve – XSS (38%) and SQLi (32%) – are not being addressed 
adequately.

As shown in Figure 9, unpatched open source components like libraries are a critical error a third of the 
time, so it’s a good thing that they are being addressed. The severity levels of SQLi and XSS merit more 
attention whenever and wherever they are found. However, Insufficient Transport Layer Protection is 
critical 94 percent of the time it is found, yet appears nowhere on this chart.
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figure 11.  remediation rates by vulnerability class - sast
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USING DAST & SAST 
IN COMBINATION
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DISTRIBUTION OF 
VULNERABILITIES 
BETWEEN DAST & SAST

DAST & SAST are complementary application 
security testing tools that should be used in 
combination.

It is important to compare the results of DAST & SAST scans in combination.

Here are a few reasons why:

■■ The number of vulnerabilities per asset is very high in SAST compared to DAST. See Figure 12.
■■ Vulnerabilities found by DAST aren’t always found by SAST. (Compare Figure 3 to Figure 8)
■■ DAST has more uniform distribution of errors compared to SAST.
■■ Not everything found in development may be exploitable when the production application is running.

Organizations should pay attention to finding and fixing serious flaws in development. 
Some vulnerabilities may not show up at all in production. Developers can fix things early 
and have them never show up in DAST scans.

Compare DAST & SAST results and take action on the most critical issues. For example, focusing on 
SQL Injection and Cross-Site Scripting as exploitable errors in both DAST & SAST is always advisable.

Application Security solutions – the combination of people, process and technology – must address 
the entire product lifecycle. They must provide visibility and control across the entire SDLC. Some 
mistakes made in development won’t be found by testing only in production. Employ these two unique 
testing tools in tandem to discover and remediate the most serious vulnerabilities.
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figure 12.  distribution of vulnerabilites between dast & sast
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TIME TO FIX 
DAST VS. SAST

It’s faster and easier to fix software errors in 
development instead of production.

Figure 13 shows the average time-to-fix (TTF) in days for vulnerabilities found in DAST, at 174 days, 
versus SAST, 113 days. It should be noted that TTF measures are not reflective of level of complexity to 
fix any given error.

DAST vulnerabilities take longer to fix on average because applications are already in 
production. This is why it is so important that SAST scans occur when software is still in 
development. That being said, remediation periods of almost four months to nearly six 
months are still too long, too slow.

This finding indicates that vulnerability remediation processes could be locked into waterfall 
development cycles, which are slower and more deliberative than iterative, more agile methods. In any 
case, it points to the need for organizations to streamline remediation processes across the board, and 
simplify the handoff between security and development teams.

Not everyone has adopted DevOps, and those that have may not be extending or expanding its 
methods to include DevSecOps. An agile security approach employs both DAST & SAST testing 
integrated with the SDLC, followed by risk-based remediation strategies. DevSecOps still remains a 
theory, not yet widely in practice (or not being implemented correctly).

Any formalized Application Security program may want to consider investment in a platform solution for 
greater visibility and control. Most combine a shared set of testing services integrated with common, 
popular SDLC tools. By making it easier for enterprises to leverage software security at the right points 
in their development and release cycles, platform solutions may be able to reduce these TTF times.
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figure 13.  average time to fix for vulnerabilities (in days) - dast vs. sast
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The last few years have seen an explosion in the usage of smart phones and tablets, which has led to a 
tremendous increase in the number of mobile apps. One of the most appealing parts of the mobile app 
is that it can be built by anyone with the right platform or mobile development environment. However, 
mobile app development is often done faster and with less attention to security compared to traditional 
web applications.

Even though Android has the largest market share among mobile customers², iOS has made slight 
gains, which leads most companies to want to create mobile applications for both platforms so that 
their users can use their favored phones to do business on the go. This doubles the work for the 
development teams who need to test their most business-critical mobile applications to make sure 
these are not an avenue of information exfiltration for users or your organization.

An average phone connects to over 160 different IP addresses during the day, with about a third of 
the information flowing in and out of a phone unencrypted (SMS, some emails, etc.). Within Android, 
for example, there are “normal” permissions that are granted by the system when requested by an 
application, and other, more “dangerous” permissions that are granted by the user. In terms of what an 
app will share with other apps, the developer needs to carefully implement the appropriate limitations, 
keeping in mind the idea of least privilege.

There are visual cues for security and encryption for web applications (https, browser warnings) that are 
not present for mobile apps. In analyzing the data from the NowSecure mobile app security intelligence 
engine for this report, the most common findings on both platforms had to do with session-level events, 
from cookies and session handling to lack of encryption of sensitive data like logins and passwords, 
and weak key size.

The following data points come from the NowSecure mobile app security intelligence 
engine. The engine consumes data from hundreds-of-thousands of mobile app security 
assessments consisting of dynamic or static analyses of Android and iOS apps.

²² IDC, “Smartphone OS Market Share, 2016 Q3”, http://www.idc.com/promo/smartphone-market-share/os

http://www.idc.com/promo/smartphone-market-share/os
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TOP ANDROID APP 
SECURITY ISSUES
worth noting:

■■ 90% of the Android apps we tested set the allowBackup flag to true which can allow an attacker to 
backup the app folder and recover private data from it.

■■ 80% of the Android apps we tested did not use basic obfuscation which can make it easier for an 
attacker to reverse-engineer an app, which can put intellectual property at risk.

figure 14.  top android app security issues

Allows Backup: If the AllowBackup flag is enabled, it could allow for easier access to the app files 
stored on the mobile device.  The severity of this issue is “Medium” and it is caught 90.14% of the 
time during a static scan of Android apps.

Lacks Basic Obfuscation: If an app’s source code is not obfuscated, it’s easier for an attacker 
to reverse engineer the app and puts intellectual property at risk. The severity of this issue is 
Medium and it is caught 80.48% of the time during a static scan of Android apps.

SecureRandom implementation issues: An app that uses the Java Cryptography Architecture 
(JCA) for key generation and does not properly initialize the pseudo-random number generator 
(PRNG) may not receive cryptographically strong values on Android devices.  The severity of this 
issue is Medium and it is caught 71.42% of the time during a static scan of Android apps.

Weak/inadequate Key Size: The key used to sign the app is less-than-or-equal to 1024 bits, which 
leaves the app vulnerable to forged digital signatures. The severity of this issue is Medium and it is 
caught 52.50% of the time during a static scan of Android apps.
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ANDROID 
VULNERABILITIES BY 
MOBILE APP CATEGORY
worth noting:

■■ We identified a security issue in 26.17 percent of Android apps tested.

■■ Of those apps that included a finding, there was an average of 2.28 issues per app.

■■ We identified a high-risk security issue in 21.22 percent of Android apps tested.

■■ Of those apps that included a high-risk finding, there was an average of 2.36 high-risk issues per app.

Apps within the Android sample that we were unable to categorize are not included in this particular 
statistic. An app can be listed under more than one category in Google Play. If an app was listed under 
more than one category, we counted that app in the data set for each category. We did this because it 
tells a more complete story about apps within any one genre. Example: if an Android app is listed under 
“Business” and “Communication”, one user might consider the app a Business app while another might 
consider the app a Communication app.

figure 15.  android vulnerabilities by mobile app category
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TOP iOS APP 
SECURITY ISSUES
worth noting:

■■ Cookie without secure flag is a common configuration issue in iOS which leads to security vulnerabilities.

figure 16.  top ios app security issues

Cookie without secure flag: A cookie within the app was not marked “Secure” and therefore may 
be transmitted over HTTP even if the session with the host is secure. The severity of this issue is 
Medium and it is caught 30.15% of the time during a dynamic scan of iOS apps.

Cookie without httponly flag: A cookie within the app was not marked “HTTPOnly” and therefore 
may make the cookie accessible via the client-side and leave the app vulnerable to cross-site 
scripting. The severity of this issue is Medium and it is caught 26.24% of the time during a dynamic 
scan of iOS apps.

Sensitive data in transit (no encryption): Traffic included sensitive data (which might include 
username, password, GPS coordinates, WiFi MAC address, IMEI, Device Serial Number, Phone 
Number, etc.) transmitted over the network without encryption (i.e., via HTTP, not HTTPS). The 
severity of this issue is High and it is caught 18.84% of the time during a dynamic scan of iOS apps.
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iOS VULNERABILITIES BY 
MOBILE APP CATEGORY
We were able to categorize all iOS apps within the sample. An app can be listed under more than one 
category in the Apple App Store. If an app was listed under more than one category, we counted that 
app in the data set for each category. We did this because it tells a more complete story about apps 
within any one genre. Example: if an iOS app is listed under “Business” and “Communication,” one user 
might consider the app a Business app while another user might consider the app a Communication app.

figure 17.  ios vulnerabilities by mobile app category
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CASE STUDY

MAKING THE CASE 
FOR DEVSECOPS
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INDUSTRY
Healthcare

PROFILE
This company is one of the largest U.S. healthcare providers. It is a multi-billion dollar enterprise serving millions of 
customers across many states. The provider offers insurance coverage through its own network of many major hospitals 
and medical groups.

SITUATION
Healthcare is a highly regulated industry in the U.S. Healthcare delivery models are constantly evolving, and this large 
enterprise was not immune to the tectonic changes wrought in its industry by digital business transformation. Service 
provision was becoming more web-oriented, so its application portfolio became a critical part of delivering its high 
standard of patient care. Over time, the provider’s transactional systems were all becoming web-facing, with patients 
able to largely self-service.

To keep up, the company’s IT group adopted DevOps to realize more agile, rapidly iterative application development. 
This methodology relies on continuous release cycles and non-stop innovation. At the same time, HIPAA compliance 
mandates require healthcare applications to protect patient privacy. As the attack threat surface was only growing 
larger, its cybersecurity team understood that a greater focus on application security would now be required. Under 
this constant pressure, the team also realized that its software development organization lacked the tools, talent and 
expertise required to succeed… and they were never going to be able to train everybody.

SOLUTION
To secure patient-facing web applications quickly, tight feedback loops would be necessary between the cybersecurity 
team and development teams, otherwise valuable cycles would be wasted. Yet the idea of a centralized application 
security office that would act as gatekeeper was debated and rejected. Application security needed to be front and 
center, but not a road block to DevOps. Instead, it was decided to have individual developers become the champions of 
more secure software, and the cybersecurity team would empower them to succeed.

A formal application security program is essential to reduce overall business risk. With the CISO’s support, the 
cybersecurity team set up a sub-group for designing, implementing and running a robust application security program 
within a greater mission. It would become cybersecurity’s job to raise awareness among software development 
teams, enroll individual developers in the effort, and build the bridges necessary for success. Starting in 2015, they 
began reaching out to each development team’s leader asking them to nominate one person to act as liaison to the 
cybersecurity office. After training them on secure coding techniques, the cybersecurity team proclaimed these 
new subject matter experts “Security Heroes”! The goal was to foster positive collaboration, not a punitive approach 
correcting developer mistakes.
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With the infrastructure of its new application security program now in place, this healthcare organization decided to 
switch to WhiteHat and its scalable cloud-based application security platform that provides highly accurate, highly 
actionable results. The platform provides a comprehensive set of holistic testing services, including both DAST and SAST.

The ultimate goal was automation. WhiteHat needed to be seamlessly integrated into existing software development 
processes and tools of choice, so there would be no negative impact on developer productivity. This meant integrating 
WhiteHat Sentinel via APIs with a Jenkins build server and JIRA workflow system. Code is developed daily and checked 
in for scanning on a nightly basis. A worklist for each individual developer then shows up directly in JIRA the following 
morning. There are no extra steps or added security barriers blocking in the way. In fact, a code assessment can be 
ordered at any point in the software development lifecycle, making it easy for development teams to catch and fix 
critical vulnerabilities earlier in the SDLC. WhiteHat doesn’t meter its services, so software security improvements are 
frictionless and continuous.

RESULTS
This large healthcare organization has demonstrated a successful implementation of a real DevSecOps approach. It has 
created a sustainable infrastructure for software development teams to be not only successful, but self-sufficient. The 
cybersecurity team understands its role is to provide value, advice and expertise acting as change agents and thought 
leaders in application security. In the process, it has proven to be a true center of excellence for application security.

The proof is in the data. Critical DAST vulnerabilities have been cut in half. Errors in production applications are fixed in 
an average of 92 days compared to the industry average of 174 days. Even better, SAST vulnerabilities are remediated in 
less than half the time of the overall industry. For example, teams discovered 75 SQL injection errors in 2016. Of these, 
78 percent were able to be remediated, many of the most serious flaws in under ten days apiece.

Metrics are returned continuously to improve the program. These are measured and monitored over time, like 
strengthening a muscle for quality software code. Starting with baseline training and certification, more advanced 
developer courses have been created and offered on a scheduled basis. In the future the cybersecurity team will 
provide additional fun incentives for development teams, such as gamifying vulnerability mitigation with a leaderboard. 
The goal is always to work toward data breach prevention and attain even more success in the future.

TIME TO FIX (IN DAYS) FOR MODEL CUSTOMER VS. OTHERS VULNERABILITY REMEDIATION RATE (WITHIN 10 DAYS) 
FOR MODEL CUSTOMER VS. OTHERS

OTHERSMODEL CUSTOMER

113
174

51
92

SAST AVERAGE TTFDAST AVERAGE TTF

53% 15%
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THE PATH FORWARD
adopt devsecops to deliver the competitive 
advantages of application security.

Organizations already adopting DevOps practices must extend their approach to include 
application security practices as well. DevSecOps is the path to application security in agile 
development environments. The time is now. There are real-world examples that prove its 
advantages. Results of DevSecOps focus on speedier process improvements include a lower 
average time to fix and higher remediation rates.

take a risk-based approach to remediating 
application security vulnerabilities.

Avoid taking the path of least resistance in prioritizing remediation of code fixes (i.e. don’t 
just fix the easiest ones first). Risk-based remediation processes weigh criticality against an 
application’s primary use cases. Educate all development teams to understand the relative 
risk levels of different application vulnerability types. The path to a true Center of Excellence 
is positive collaboration between the security team and developers, not punitive.

fix code vulnerabilities commonly found in 
production software earlier, during development. 

Application security testing in development makes resulting production applications stronger. 
Different classes of vulnerabilities are more likely to be found, more often, in SAST as 
opposed to DAST. Certain vulnerabilities take a shorter amount of time and are easier to fix 
during development. For example, both SQL injection and Cross-Site Scripting are critical to 
address wherever and whenever they are detected. Coordinate static and dynamic scanning 
together as routine processes for the optimal application security posture.

integrate all application security testing methods 
with the software development lifecycle (SDLC). 

Organizations with the most mature application security programs integrate multiple kinds of 
testing (DAST, SAST, Mobile, etc.) throughout the application lifecycle.  Think about application 
security earlier in the SDLC to see the best results. Why? Because it is faster and costs less to 
catch and fix flaws during the development process. At a minimum, integrate DAST and SAST 
in combination. Application security platform solutions are a viable option for better visibility 
and control, as they extend to SCA, API testing, training, and other shared services.

recommendation.1

recommendation.2

recommendation.3

recommendation.4
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METHODOLOGY
WhiteHat Security has been publishing this report since 2006. The study comprises statistical data and 
analysis gathered from continuously updated security testing information in WhiteHat Sentinel, a cloud-
based application security platform.

The aggregated data comes from actual code-level analysis of billions of lines of code and tens 
of thousands of websites, web applications and mobile apps. Sentinel inspects the full spectrum 
of applications, including components and shared libraries. Industry information for websites and 
applications is provided by customers.

The report’s statistical analysis focuses exclusively on assessment and remediation data for custom 
applications. Data is segmented along multiple dimensions including vulnerability risk levels, 
vulnerability classes, and industries. Data analysis uses key indicators that include the likelihood of a 
given vulnerability class, remediation rates, time to fix, and age of open vulnerabilities. 

Risk levels are based on the rating methodology of Open Web Application Security Project (OWASP). 
Vulnerabilities are rated on five levels of risk – Critical, High, Medium, Low, and Note. Critical and high-
risk vulnerabilities taken together are referred to as “serious” vulnerabilities. Vulnerability classes are 
based on the threat classification of Web Application Security Consortium (WASC).

Some biases may be intrinsic to the data source – for instance, a site that was recently on-boarded 
to Sentinel will have a much lower Open Vulnerability Age for any of its vulnerabilities than a site 
that has been using Sentinel longer. Different service levels for different sites also mean that certain 
vulnerabilities may be more likely to be discovered than others. Finally, tests are continually evolving, 
and change in tests over time may affect apparent trends.

https://www.owasp.org/index.php/Main_Page
http://www.webappsec.org/
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APPENDIX: 
GLOSSARY OF TERMS

Web Application Vulnerability Classes

abuse of functionality
Abuse of Functionality is an attack technique that uses a web site's own features and functionality to 
attack. It misuses an application's intended functionality to perform an undesirable outcome. These 
attacks can consume resources, circumvent access controls, or leak information. The potential and level 
of abuse will vary from site to site and application to application. This category of attacks is broad and 
includes situations where an application's features can be functioning properly but still be exploited. 

application misconfiguration
Application Misconfiguration exploits configuration weaknesses found in applications. Many 
applications come with unsafe features enabled by default, such as debug and QA features. These 
features may provide a means for a hacker to bypass authentication methods and gain access to 
sensitive information, perhaps with elevated privileges.

brute force attack
Brute Force Attacks are used to determine an unknown value such as a password by using an 
automated process to try many possible values. The attack takes advantage of the fact that the entropy 
of the values is smaller than perceived. For example: while an 8-character alphanumeric password 
can have 2.8 trillion possible values, many people will select passwords from a much smaller subset 
consisting of common words and terms.

buffer overflow
Buffer Overflow is a flaw that occurs when more data is written to a block of memory, or buffer, than the 
buffer is allocated to hold. Exploiting Buffer Overflow allows an attacker to modify portions of the target 
process address space.
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content spoofing
Content Spoofing is an attack technique that allows an attacker to inject a malicious payload that is later 
misrepresented as legitimate content of an application. This attack compromises the trust relationship 
between the user and the application.

credential / session prediction
Credential or Session Prediction is a method of hijacking or impersonating an authorized application 
user by deducing or guessing the unique value that identifies a particular session or user, which can 
allow attackers to issue site requests with the compromised user’s privileges.

cross site request forgery
Cross-Site Request Forgery is an attack that involves tricking a victim into sending an HTTP request to 
a target destination without the victim’s awareness, so that the attacker can perform an action as the 
victim. CSRF exploits the trust that an application has for a user.

cross-site scripting
In Cross-Site Scripting attacks, a malicious site includes a particular URL – one that will cause the target 
site to include a script chosen by the malicious site – in a target site’s page, and makes the user agent 
request it. Since the page is loaded with the user agent’s credentials, the script is able to perform 
actions at the target site in the user's name.

cryptography: insecure digest
Insecure Digest refers to an application that utilizes an insecure cryptographic hashing algorithm. 
The potential consequences of using an insecure cryptographic are similar to using an insecure 
cryptographic algorithm: data theft or modification, account or system compromise, and loss of 
accountability – i.e., non-repudiation.

denial of service
Denial of Service (DoS) attacks attempt to prevent an application from serving normal user activity. 
DoS attacks, which are normally applied to the network layer, are also possible at the application layer. 
These malicious attacks can succeed by starving a system of critical resources.

directory indexing
Directory Indexing exploits insecure indexing, threatening a site’s data confidentiality. Site contents are 
indexed via a process that accesses files that are not supposed to be publicly accessible. Information 
is collected and stored by the indexing process and can later be retrieved by a determined attacker, 
typically through a series of search engine queries. Directory Indexing has the potential to leak 
information about the existence of such files and their content.
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directory traversal
The Directory Traversal attack technique (aka Path Traversal) allows an attacker access to files, 
directories, and commands that potentially reside outside the root directory. An attacker may 
manipulate a URL in such a way that the application will execute or reveal the contents of arbitrary files 
anywhere on the server. Any device that exposes an HTTP-based interface is potentially vulnerable to 
Directory Traversal.

fingerprinting / footprinting
Fingerprinting or Footprinting is often an attacker’s first goal. They will accumulate as much information 
as possible including the target’s platform, application software technology, backend database version, 
configuration, and possibly even their network architecture/topology. Based on this information, the 
attacker can develop an accurate attack scenario to exploit any vulnerability in the software type/
version being utilized by the target.

format string attack
Format String Attacks alter the flow of an application by using string formatting library features 
to access other memory space. Vulnerabilities occur when user-supplied data is used directly as 
formatting string input for certain C/C++ functions (e.g. fprintf, printf, sprintf, setproctitle, syslog).

http request smuggling
HTTP Request Smuggling abuses the discrepancy in parsing non-RFC compliant HTTP requests 
between two HTTP devices – typically a front-end proxy or HTTP-enabled firewall and a back-end 
server – to smuggle a request to the second device through the first device. This technique enables an 
attacker to send one set of requests to the second device while the first device interacts on a different 
set of requests. This facilitates several possible exploits, such as partial cache poisoning, bypassing 
firewall protection and XSS.

http request splitting
HTTP Request Splitting forces the browser to send arbitrary HTTP requests. Once the victim’s browser 
is forced to load the attacker’s malicious HTML page, the attacker manipulates one of the browser’s 
functions to send two HTTP requests instead of one.

http response smuggling
HTTP Response Smuggling uses an intermediary HTTP device that expects or allows a single response 
from the server to send two HTTP responses from a server to a client that expects or allows a single 
response from the server.

http response splitting
HTTP Response Splitting allows an attacker to manipulate the response received by a web browser. 
The attacker can send a single HTTP request that forces the web server to form an output stream which 
is then interpreted by the target as two HTTP responses instead of one, as is the normal case. 
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improper filesystem permissions
Improper Filesystem Permissions are a threat to the confidentiality, integrity and availability of an 
application. The problem arises when incorrect filesystem permissions are set on files, folders, and 
symbolic links. When improper permissions are set, an attacker may be able to access restricted files or 
directories and modify or delete their contents.

improper input handling
Generally, the term input handling is used to describe functions like validation, sanitization, filtering, 
or encoding and/or decoding of input data. Improper Input Handling is a leading cause behind critical 
vulnerabilities that exist in systems and applications.

improper output handling
Improper Output Handling is a weakness in data generation that allows the attacker to modify the data 
sent to the client.

improper pseudo-random number generator
Insufficient randomness results when software generates predictable values when unpredictability is 
required.  When a security mechanism relies on random, unpredictable values to restrict access to a 
sensitive resource, such as an initialization vector (IV), a seed for generating a cryptographic key, or a 
session ID, then use of insufficiently random numbers may allow an attacker to access the resource by 
guessing the value. The potential consequences of using insufficiently random numbers are data theft 
or modification, account or system compromise, and loss of accountability (i.e., non-repudiation).

information leakage
Information Leakage allows an application to reveal sensitive data, such as technical details of the 
application, environment, or user-specific data. Sensitive data may be used by an attacker to exploit the 
target application, its hosting network, or its users.

insecure indexing
Information is collected and stored by the indexing process. Insecure Indexing allows this information 
to be retrieved by a determined attacker, typically through a series of queries to the search engine. The 
attacker does not thwart the security model of the search engine; therefore this attack is subtle and 
very hard to detect. It’s not easy to distinguish the attacker’s queries from a legitimate user’s queries.

insufficient anti-automation
Insufficient Anti-Automation occurs when an application permits an attacker to automate a process that 
was originally designed to be performed only in a manual fashion, e.g. registration for a site.
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insufficient authentication
Insufficient Authentication occurs when an application permits an attacker to access sensitive content 
or functionality without having to properly authenticate. For example, accessing admin controls by 
going to the /admin directory without having to log in.

insufficient authorization
Insufficient Authorization occurs when an application fails to prevent unauthorized disclosure of data or 
a user is allowed to perform functions in a manner inconsistent with the permission policy.

insufficient cookie access control
Insufficient Cookie Access Control occurs when cookie attributes such as “domain”, “path” and “secure” 
are not correctly utilized to limit access to cookies containing sensitive information. These attributes 
can be used by the user-agent when determining cookie access rights.

insufficient crossdomain configuration
The crossdomain.xml file is used to determine from which resources a Flash application is allowed to 
access data. Insufficient Crossdomain Configuration reflects a poorly configured Flash application that 
can be compromised to allow an attacker access to all the resources allowed in the crossdomain file. 
This error often occurs because a crossdomain file makes use of wild-card notation.

insufficient password aging
Insufficient Password Aging allows a user to maintain the same password for an extended length of 
time, increasing the risk of password-based attacks.

insufficient password recovery
Insufficient Password Recovery occurs when an application permits an attacker to obtain, change or 
recover another user’s password without permission. This happens when the information required to 
validate a user’s identity for recovery is either easily guessed or circumvented. Password recovery 
systems may be compromised through the use of brute force attacks, inherent system weaknesses, or 
easily guessed secret questions.

insufficient password strength
Insufficient Password Strength exists when a password policy does not aid the user in selecting a 
password that is less vulnerable to Brute Force attacks.

insufficient process validation
Insufficient Process Validation occurs when an application fails to prevent an attacker from 
circumventing the intended flow or business logic of the application.
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insufficient session expiration
Insufficient Session Expiration occurs when an application permits an attacker to reuse old session 
credentials or session IDs for authorization. Insufficient Session Expiration exposes an application to 
attacks that steal or reuse a user’s session identifiers.

insufficient session invalidation
A user should be able to invalidate a session simply by logging out. This error occurs when the 
application removes the session cookie but doesn’t invalidate the session.

integer overflows
Integer Overflow occurs when the result of an arithmetic operation such as multiplication or addition 
exceeds the maximum size of the integer type used to store it. Attackers can use these conditions to 
influence the value of variables in ways that the programmer did not intend.

invalid http method usage
HTTP Methods can be used inappropriately and compromise the integrity of the application. For 
example, the GET method is not intended to contain sensitive information or change the site state. 
Doing so increases vulnerability to Cross Site Request Forgery, Information Leakage, and accidental 
damage by crawlers.	

ldap injection
LDAP Injection uses the open standard Lightweight Directory Access Protocol (LDAP) to preform 
exploits similar to those used in SQL Injection. 

mail command injection
Mail Command Injection is an attack technique used to exploit mail servers and webmail applications 
that construct IMAP/SMTP statements from user-supplied input that is not properly sanitized.

non-http only session cookie
A session cookie value can be accessed and manipulated by malicious client-side Javascript. Setting 
the “HttpOnly” attribute instructs the User-Agent to restrict access to the cookie only for use with HTTP 
messages.

null byte injection
Null Byte Injection is an active exploitation technique used to bypass sanity checking filters in 
infrastructure by adding URL-encoded null byte characters (i.e. %00, or 0x00 in hex) to the user-
supplied data.

os command injection
OS Command Injection, aka OS Commanding, is an attack technique used for unauthorized execution 
of operating system commands.
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path traversal
(see Directory Traversal)

persistent session cookie
This error occurs when cookies whose values contain sensitive data have a future expiration date and 
do not expire with the session. 

personally identifiable information
Personally Identifiable Information (PII) is information that identifies a single person or can be used with 
other information sources to identify a single person. Examples of PII include: name, age, birth date, 
birth place, credit card number, criminal record, driver’s license number, education history, genotype, 
social security number, race, place of residence, vehicle identification number, and work history. 

predictable resource location
Predictable Resource Location allows an attacker, by making educated guesses via brute forcing, to 
guess file and directory names not intended for public viewing. Brute forcing filenames is easy because 
files/paths often have common naming conventions and reside in standard locations. Predictable 
Resource Location is also known as Forced Browsing, Forceful Browsing, File Enumeration, or Directory 
Enumeration.

remote file inclusion
Remote File Inclusion (RFI) exploits dynamic file inclusion mechanisms in applications. When a user 
input specifies a file inclusion, the application can be tricked into including remote files with malicious 
code.

routing detour
Routing Detour is a type of “man-in-the-middle” attack in which intermediaries can be injected or 
hijacked in order to route sensitive messages to an outside location in such a way that the receiving 
application is unaware that it has occurred.

server misconfiguration
Configuration weaknesses found in servers and application servers can trivially allow abuse of default 
functionality.

session fixation
Session Fixation is an attack that forces a user’s session ID to a known value. After a user’s session ID 
has been fixed, the attacker will wait for that user to login and use the predefined session ID value to 
assume the same online identity. Session Fixation provides a much wider window of opportunity than 
would be provided by stealing a user’s session ID after they have logged into an application.
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session / credential prediction
Session or Credential Prediction (aka Session Hijacking) is a method of hijacking or impersonating 
an authorized application user by deducing or guessing the unique value that identifies a particular 
session or user. This can allow attackers to issue site requests with the compromised user’s privileges.

soap array abuse
In XML SOAP Array Abuse, a service that expects an array can become the target of a XML DoS 
attack by forcing the SOAP server to build a huge array in the machine’s memory, thus inflicting a DoS 
condition on the machine due to the memory pre-allocation.

sql injection
SQL Injection exploits applications that construct SQL statements from user-supplied input. When 
successful, the attacker is able to execute arbitrary SQL statements against the database.

ssi injection
Server-Side Include Injection is a server-side exploit that allows an attacker to send code to an 
application to be executed later, locally by the server. SSI Injection exploits an application’s failure to 
sanitize user-supplied data before inserting the data into a server-side interpreted HTML file.

unsecured session cookie
If a session cookie does not have the secure attribute enabled, it is not encrypted between the client 
and the server. This means the cookie is exposed to theft.

url redirector abuse
URL redirectors can be abused to cause an attacker’s URL to appear to be endorsed by the legitimate 
site, tricking victims into believing that they are navigating to a site other than the true destination. (See 
Content Spoofing)

weak cipher strength
In the Weak Cipher Strength vulnerability, the application’s server allows the use of weak SSL/TLS 
ciphers which are typically weaker than 128 bits and do not use signed certificates (e.g. SHA-1 hash).

weak password recovery validation
An application permits an attacker to illegally obtain, change or recover another user’s password 
because the information required to validate a user’s identity for password recovery is either easily 
guessed or can be circumvented. Password recovery systems may be compromised through the use of 
brute force attacks, inherent system weaknesses, easily guessed or easily phished secret questions.
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xml attribute blowup
XML Attribute Blowup takes advantage of some XML parsers' parsing process. The attacker provides a 
malicious XML document, which vulnerable XML parsers process inefficiently, resulting in severe CPU 
load. Many attributes are included in the same XML node, resulting in a denial of service condition.

xml entity expansion
XML Entity Expansion exploits a capability of XML Document Type Definitions that allows the creation 
of custom macros called “entities”. By recursively defining a set of custom entities at the top of a 
document, an attacker can overwhelm parsers that attempt to completely resolve these entities, 
resulting in a denial of service condition.

xml external entities
An XML External Entities attack takes advantage of a feature of XML that allows you to build documents 
dynamically at the time of processing. It uses an XML message that can provide data explicitly or 
points to an URL where the data exists. In the attack external entities may replace the entity value with 
malicious data. Alternately, referrals may compromise the security of the data to which the server/XML 
application has access.

xml injection
XML Injection manipulates or compromises the logic of an XML application or service. The injection 
of unintended XML content and/or structures into an XML message can alter the intended logic of the 
application. Furthermore, XML Injection can cause the insertion of malicious content into the resulting 
message/document.

xpath injection
XPath Injection exploits applications that construct XPath (XML Path Language) queries from user-
supplied input to query or navigate XML documents.

xquery injection
XQuery Injection is a variant of the classic SQL injection attack against the XML XQuery Language. 
XQuery Injection uses improperly validated data that is passed to XQuery commands. 
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Android Mobile App Vulnerability Classes

allows backup
If the “allow backup” flag is enabled, it could allow for easier access to the app files stored on the 
mobile device.

dynamic code loading
While this is not a vulnerability per se, it can lead to code injection or malicious side-loading of code.

javascript interface check
Using `addJavascriptInterface()` can allow an attacker to intercept network traffic sent by the app and/or 
interact with the JavaScript interface.

weak/inadequate key size
The key used to sign the app is less-than-or-equal to 1024 bits, which leaves the app vulnerable to 
forged digital signatures.

lacks basic obfuscation
If an app’s source code is not obfuscated, it’s easier for an attacker to reverse engineer the app and 
puts intellectual property at risk.

securerandom implementation issues
An app that uses the Java Cryptography Architecture (JCA) for key generation and does not properly 
initialize the pseudo-random number generator (PRNG) may not receive cryptographically strong values 
on Android devices.

sensitive data in transit (no encryption)
Traffic included sensitive data (e.g., username, password, GPS coordinates, WiFi MAC address, IMEI, 
Device Serial Number, Phone Number, etc.) transmitted over the network without encryption (i.e., via 
HTTP, not HTTPS).

world readable files check
Files with world-readable permissions enabled can allow other apps on a device to read app files which 
may include sensitive data. Google applied a protection measure in Android 6.0 (“Marshmallow”) to 
prevent apps from reading another app’s files. We continue to test for this issue because as of March 
6, 2017, 65.9 percent of Android devices use a version of Android prior to 6.0 (and therefore apps on 
those devices will be vulnerable).
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world writable files check
Files with world-writable permissions were identified, which can grant other apps write access to those 
files.

zip files sent in transit
The app transmits ZIP files over the network, potentially in an insecure manner which, in combination 
with other issues (e.g., Writeable Executable issues), could result in a remote code execution 
vulnerability.

iOS Mobile App Vulnerability Classes

cookie without secure flag
A cookie within the app was not marked “Secure” and therefore may be transmitted over HTTP even if 
the session with the host is secure.

cookie without httponly flag
A cookie within the app was not marked “HTTPonly” and therefore may make the cookie accessible via 
the client-side and leave the app vulnerable to cross-site scripting.

sensitive data in transit (no encryption)
Traffic included sensitive data transmitted over the network without encryption (i.e., via HTTP, not 
HTTPS). Sensitive data might include username, password, GPS coordinates, WiFi MAC address, IMEI, 
Device Serial Number, Phone Number, etc.
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About NowSecure

NowSecure is the mobile app security software company that enterprises trust to continuously secure 
mobile applications. NowSecure provides coverage for all mobile apps, superior testing and analysis, 
and multiple delivery models for automated or analyst-driven products. NowSecure customers 
benefit by making their app security process significantly faster and their apps more secure. For more 
information about NowSecure, visit www.nowsecure.com.

About WhiteHat Security

WhiteHat Security has been in the business of securing applications for over 15 years. In that time, 
we’ve seen applications evolve and become the driving force of the digital business, permeating 
every aspect of our lives. As a result, it’s more important than ever to ensure that security experts 
and software developers work hand-in-hand to secure the applications that drive our daily digital 
experiences. The WhiteHat Application Security Platform is a cloud service that allows organizations 
to bridge the gap between security and development to deliver secure applications at the speed of 
business. This innovative platform is one of the reasons why WhiteHat has won numerous awards 
and been recognized by Gartner as a Leader in application security testing four times in a row.  The 
company is headquartered in Santa Clara, Calif., with regional offices across the U.S. and Europe. For 
more information on WhiteHat Security, please visit www.whitehatsec.com, and follow us on Twitter, 
LinkedIn and Facebook.

http://www.nowsecure.com
http://www.whitehatsec.com
https://www.linkedin.com/company/whitehat-security
https://www.linkedin.com/company/whitehat-security
https://www.facebook.com/whitehatsecurity
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