- Fuzzy logika -
Aplikace fuzzy logiky na měření teploty umožňuje používat pojmy jako „studená voda“, „teplá voda“, „horká voda“, které nemají striktní hranice
Fuzzy logika (česky též mlhavá logika) je podobor matematické logiky odvozený od teorie fuzzy množin, v němž se logické výroky ohodnocují mírou pravdivosti. Liší se tak od klasické výrokové logiky, která používá pouze dvě logické hodnoty - pravdu a nepravdu, obvykle zapisované jako 1 a 0. Fuzzy logika může operovat se všemi hodnotami z intervalu <0; 1>, kterých je nekonečně mnoho. Fuzzy logika náleží mezi vícehodnotové logiky.
Fuzzy logika může být pro řadu reálných rozhodovacích úloh vhodnější než klasická logika, protože usnadňuje návrh složitých řídicích systémů.
Etymologie
Název vychází z anglického slova fuzzy – nejasný, mlhavý, neostrý (potažmo neurčitý). Případně rovněž nepřesný, zmatený (konfúzní).
Motivace vzniku
Fuzzy logika byla zavedena roku 1965 Lotfim Zadehem z Kalifornské univerzity v Berkeley. Vznikla z teorie fuzzy množin, stala se předmětem zájmu matematiků a stále se vyvíjí.
Motivace vzniku fuzzy množin a návazně fuzzy logiky, byla vytvořit nástroj, který by byl mostem mezi dvěma typy znalostí, mezi nimiž je propast. Pro vysvětlení si z hesla Vágnost uvedeného zde na Wikipedii vypůjčíme odstavec:
Mezi znalostmi získanými přirozeným poznáním a znalostmi získanými poznáním metodou exaktních věd, je kvalitativní propast. V prvém případě se na svět díváme filtrem vágnosti, v druhém případě filtrem „dírkovaným“, dírkami „vidíme“ atributy (měřitelné veličiny a parametry) - elementární manifestace reálného světa a vztahy mezi nimi, a nic jiného. Newton „digitalizoval“ přirozený vágní pohled člověka na reálný svět. Inherentně vágní znalosti získané přirozeným poznáním lze sdělovat (reprezentovat, popsat) jen a jen neformálním jazykem, nejčastěji přirozeným. Znalosti získané umělým poznáním lze reprezentovat umělým formálním jazykem (matematika, logika, programovací jazyky).
Jedná se o to, jak inherentně vágní výroky přirozeného jazyka, převést do formálního jazyka, jímž v tomto případě je fuzzy logika a překonat tak onu výše uvedenou propast. [1], [2]. Jelikož vágnost přirozeného jazyka je především vnitřní, (pro příjemce utajená, může ji jen odhadovat) a to i u kvantifikátorů, a vnitřní vágnost umělého formálního jazyka musí být vždy nulová, je třeba původní vnitřní vágnost odstranit a převést ji na vnější vágnost, kterou je umělý formální jazyk fuzzy množin a fuzzy logiky schopen reprezentovat. Znamená to vyzpovídat člověka, případně skupinu lidí tak, aby se shodli např. na tom, co pro ně fuzzy kvantitativně vyjádřeno, znamená příjemně teplá voda, spíš vyšší strom, nebo nepříliš chytrý člověk. Původní vágní chápání vyjádřené přirozeným jazykem se převádí na fuzzy hodnoty, které je pak možno dávat do souvislostí popsaných fuzzy operacemi fuzzy logiky. Převod z přirozeného jazyka do umělého formálního jazyka fuzzy logiky je vágní, tedy poznamenán nejistotou, neboť významy jazykových konstrukcí přirozeného jazyka jsou každým člověkem přiřazovány prostřednictvím emotivní, subjektivní a vágní konotace, měnící se od člověka k člověku, ale pro každého i v čase. Sebe sofistikovanější vyzpovídání respondentů nezaručí nulovou neurčitost onoho převodu z přirozeného jazyka do umělého formálního jazyka fuzzy množin a fuzzy logiky. Platí zde to, co jsme řekli v heslech Wikipedie Vágnost a Exaktní věda, a to: požadujeme-li exaktní poznatky zapsatelné umělým formálním jazykem, je nutno začít exaktním Newtonovým umělým poznáním. Nelze inherentně vágní znalosti získané přirozeným lidským poznáním, kde je filtrem poznáním vágnost, dodatečně převést na exaktní znalosti, tedy zbavit je vnitřní vágnosti, a tak dodatečně zkvalitnit informaci.
Fuzzy logika postupně nalezla i jiná použití, na příklad v automatickém řízení.
Stupeň příslušnosti
Funkce příslušnosti ve fuzzy logice přiřazuje příslušnost k množinám v rozmezí od 0 do 1, včetně obou hraničních hodnot. Fuzzy logika tak umožňuje matematicky vyjádřit pojmy jako „trochu“, „dost“ nebo „hodně“ apod. Přesněji, umožňuje vyjádřit částečnou příslušnost k množině. Fuzzy logika používá stupeň příslušnosti (míru pravdivosti) jako matematický model vágnosti, zatímco pravděpodobnost je matematický model neznalosti. Je nutno říci, že fuzzy logika může modelovat pouze sdělitelnou vnější vágnost, na rozdíl od vnitřní vágnosti vyskytující se v konotaci (vágní, subjektivní a emocionálně zabarvené interpretaci) jazykové konstrukce. Fuzzy logika, jako každý formální systém, přísně vyžaduje exaktní interpretaci všech použitých jazykových konstrukcí systému, tedy nulovou vnitřní vágnost, jinak tedy nulový sémantický diferenciál této interpretace.
Podobnost s jinými disciplínami nebo modely
Stupeň příslušnosti je často zaměňován s pravděpodobností. Tyto pojmy jsou ale rozdílné. Fuzzy hodnota je přiřazena funkcí příslušnosti k vágně definovaným množinám a nepředstavuje pravděpodobnost nějakého jevu, stejně tak u ní nejde o možnosti, které mohou nastat a možnosti, které nastanou.
Jinou vědní disciplínou, která se zdá využívat principů fuzzy logiky, je kvantová fyzika, která též počítá s tím, že mohou existovat i stavy, u kterých je výsledek měření předpověditelný pouze v rámci pravděpodobnosti.
Příklad
Příkladem může být 30 ml vody ve stomililitrové sklenici spolu se dvěma fuzzy množinami: Plná a Prázdná. Naše částečně naplněná sklenice pak přísluší z 0,7 k Prázdné a z 0,3 k Plné.